机器学习小白学习笔记---day3---线性模型(岭回归、lasso、线性模型【svm、logistic回归】)

本文是机器学习小白的学习笔记,重点介绍了线性模型中的岭回归、Lasso回归及其在波士顿房价数据集上的应用。通过调整正则化参数,观察模型在训练集和测试集的表现,探讨了正则化在防止过拟合中的作用。此外,还简单提及了L1正则化在特征选择中的优势,并对比了岭回归和Lasso回归的差异。最后提到了用于分类的线性模型,如逻辑回归和SVM。
摘要由CSDN通过智能技术生成

机器学习小白学习笔记之scikit-learn

最近刚把西瓜书啃完,一大堆理论让脑子真的是一团浆糊,说实话看的基本只有一个概念哈哈哈,效果不高,但是让我对与机器学习真的是整体有了一个大的了解,但是并没能将每个课后作业都完成,甚至很多公式推导也没实现,太难了,让我着手于实践,古人云实践出真知,又拿起了另一本书《Introduce to Mashine Learning with python》

昨天上一节,学习完了knn分类回归,这一节继续往下学,自然而然地学到线性模型,线性模型在实际运用中还是相当广泛的。

用于回归的线性模型:
在这里插入图片描述

单一特征的预测结果是一条直线,双特征是一个平面,而高维度的则是一个超平面。

我们继续来看最常见的线性回归模型:

线性回归(普通最小二乘法)

线性回归寻找最佳的参数w(斜率、权重、系数),和b(截距),使得对训练集的预测值与真hide回归目标值y之间的均方误差最小。

在高位数据集中,线性模型将体现的更加强大,但同时会产生过拟合风险,根据书本,通过波士顿房价数据集进行预测。

我们会发现一个情况:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值