什么是Manus?
Manus 是一个通用人工智能代理,它连接思想与行动:它不仅思考,还能交付成果。Manus 擅长处理工作和生活中的各种任务,在你休息时帮你完成一切。他们坚信并践行 less structure more intelligence 的哲学:当数据足够强大、模型足够灵活、架构足够扎实,那么 compute use、deep research、coding agent 等概念就成为了自然涌现的能力。把任务留给 Manus,把时间专注于更有创造性的工作。在任务过程中,可实时通过移动端查看任务执行状态,当你回来时,Manus 将呈现令人满意的结果。
AI Agent: 更泛化的思考 【DeepSeek】
当前AI Agent的局限性:
-
当前Agent基本进行流程化的操作和尝试,在任务规划和工具使用方面存在不足。
改进方向:
- 任务规划能力提升:
-
从基于规则、参数的规划能力逐步向基于实践的反思和迭代进化。
-
- 工具使用与选择优化:
-
从依赖人类配置的特定工具,向多种工具的选择规划进化;
-
进一步探索适用于LLM的工具创造。
-
AI Agent: 较强的执行能力【代码能力】
App Agent
跨学科团队发表的论文提出:
-
通过模仿人类的交互方式(如点击、轻扫),绕过对系统后端访问的需求,扩大其在各类应用程序中的适用性;
-
通过自主探索或观察人类演示学习导航和使用新应用,并生成可复用的知识库,在执行复杂任务时调用该知识库。
手机端智能RPA
-
支持自动填写Gmail内容并发送邮件;
-
可正常操作包括社交媒体、电子邮件、地图、购物及复杂图像编辑工具等各类APP。
AI Agent: 更通用的场景【通用问题】
具体能力:
-
从各种APP中检索和分析相关程度最高的数据;
-
参考屏幕上的内容进行动态决策。
应用示例:
在WWDC大会中,苹果软件工程高级副总裁 Craig Federighi 提出以下场景:
当会议时间推迟时,用户询问「能否赶上女儿的演出」。
Apple Intelligence 将执行以下步骤:
从设备中检索「女儿演出」的相关信息(时间、地点);
同步分析「会议」的时间、地点变更;
结合常用交通方式与实时路况,计算预计行程时间;
综合判断后生成最终答复。
根据图片内容,整理文字如下(已修正排版及OCR识别错误):
AI Agent:多Agent协同【企业协同】
核心内容:
-
Agent协同的三种方式
- 单Agent部署
独立完成任务
- 多Agent交互
多个Agent协作(核心场景)
- 人-Agent交互
与人类协同工作
- 单Agent部署
-
多Agent交互的价值
- 个体层面
Agent具备计划、推理、反思等内在行为,以及认知、情感、性格等个性化特征
- 群体层面
Agent可组建团体并展现合作等集体行为
-
通过不同交互方式给予Agent反馈,持续强化其问题解决能力
-
在模拟的Agent社会框架中:
- 个体层面
-
环境互动能力
-
Agent能通过感知和行动与环境互动
-
环境中的其他Agent本身也是环境的重要组成部分
-
关注公众号“会飞的一十六”获取下载链接
往期精彩
清华大学08-使用DeepSeek赋能家庭教育【文末附下载地址】