基于DeepSeek的智能体搭建

智能体是什么?

智能体是一种生成式人工智能应用程 序,其核心是通过观察环境并利用工 具自主采取行动以实现特定目标。

智能体架构

•大模型(Language Model):作为agent流程的集中决策者使用的语言模型,能够遵循基于指令的推理和逻辑框架。 

•工具(Extensions,Functions,DataStores):赋予Agent与外部世界交互的能力,包括连接Agent与API的Extensions,允许客户端控制API调用的Functions,以及提供对外部数据访问的数据存储。

•编排层(Orchestration Layer):利用各种推理框架(如ReAct,Chain-of-Thought,Tree-of-Thoughts)指导Agent的决策过程

人工智能(AGI)的分级

级别

OpenAI描述

智谱描述

Level1

聊天机器人(Chatbots),具有对话语音能力的AI。

AI学会使用语言,在大多数自然语言任务上突破图灵测试。

Level2

推理者(Reasoners),能够像人类一样解决问题的AI。

AI学会求解问题,涌现世界知识和类人的复杂逻辑推理能力,在问题求解方面突破图灵测试。

Level3

代理(Agents),能够独立思考并根据复杂情境采取行动的AI。

AI学会使用工具,利用工具完成多数人类物理世界问题,在工具使用方面突破图灵测试。 **(红色边框标注)**

Level4

创新者(Innovators),具有创新能力,能够辅助发明和创造的AI。

AI通过自我学习,实现GPT-Zero的升级,具备自我批判、自我改进以及自我反思能力。

Level5

组织(Organizations),能够完成一个组织工作的AI。

AI能力全面超越人类,具备探究科学规律、世界起源等级极问题的能力。

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

往期精彩

DeepSeek + RAG 本地知识库搭建实战

面试提问:数仓设计不分层可以吗?

DeepSeek在医学领域的应用场景

DeepSeek大模型在政务服务领域的应用

半导体晶圆制造良率提升的指标体系设计

从O(n²)到O(n):基于累计求和模型的线性递归模式优化与多场景实战

华中科技大学-从DeepSeek到Manus AI如何重塑企业价值【文末附下载链接】

基于增量滚动计算策略的数仓累计计算指标的优化实战

Hive正则表达式基础用法与应用

千亿级表中收入中位数如何利用Hive SQL优化?

Manus-AI:Agent应用的ChatGPT时刻【文末附完整版下载链接】

DeepSeek 提示词设计、幻觉避免与应用【兼谈Manus智能,附下载链接】

PPT下载链接:

https://download.csdn.net/download/godlovedaniel/90479553

### 关于DeepSeek智能体的训练方法 对于希望深入了解并实践DeepSeek智能体训练过程的用户来说,官方提供了详尽的教学资源和支持材料。具体而言,在《DeepSeek+Coze扣子搭建智能体(保姆级教程)》中提到,该平台特别注重用户体验优化,旨在降低进入门槛,使更多非专业人士也能轻松参与到AI项目的创建当中[^1]。 #### 准备阶段 在准备阶段,建议先熟悉DeepSeek的基础架构及其核心组件的功能特性。此期间可以参考官方文档来获取必要的理论知识和技术背景介绍。此外,《10秒构建AI智能体!容智基于DeepSeek颠覆式开发平台让效率飞升!》一文中强调了通过简化的工作流配置界面,即使是不具备深厚编程功底的业务分析师也可以迅速上手操作[^3]。 #### 实践指导 当准备好基础知识之后,就可以按照实际需求选择合适的场景来进行深入学习: - **简易入门**:如果只是想要初步尝试,则可以从简单的文本生成任务入手,利用预置模板快速建立自己的第一个智能应用实例。 - **高级定制**:针对有更高要求的应用场合,如复杂对话系统的开发或是特定领域内的专业知识问答机器人等,则需掌握更加精细的数据标注技巧以及调参策略。此时,《Deep seek R1本地部署,添加智能体教程》将成为重要的参考资料,它不仅涵盖了环境设置方面的细节说明,还给出了连接外部API接口的具体步骤指引[^4]。 #### 性价比优势 值得注意的是,相较于其他同类产品,DeepSeek系列模型展现出显著的成本效益特点。例如,在保持高水平性能的同时大幅减少了所需的硬件投入和时间消耗——据公开资料显示,2023年完成一次完整的R1版本迭代仅支出了约600万美元的资金规模,远远低于竞争对手所公布的数值水平[^2]。 ```python # Python代码片段用于展示如何加载预训练好的DeepSeek模型 from deepseek import load_model, preprocess_input model = load_model('path/to/deepseek-r1') input_data = "your input text here" processed_input = preprocess_input(input_data) output = model.predict(processed_input) print(output) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值