在当今信息爆炸的时代,我们每天都在与海量的文档打交道,无论是研究报告、学术论文还是日常的工作文件。随着数据量的不断增长,如何高效地从这些文档中提取所需信息成为了一个挑战。
随着 AI 技术的发展和 RAG 技术的出现,前面遇到的问题,有了一个很不错的解决方案。将您的文档转化为一个智能的知识库,让您能够通过简单的对话就能获取深入的洞察和答案。
本文 Kakuqo 将介绍近期 Github 上非常火爆的开源项目 —— Kotaemon。
Kotaemon 是一个基于 RAG 的开源工具,让你可以轻松地与您的文档 “聊天”💬。
kotaemon 主要特点
-
自托管文档问答 (RAG) Web-UI:支持多用户登录,组织文件到私人/公共集合,协作并分享你喜欢的聊天记录。
-
组织 LLM 和嵌入模型:支持本地 LLM 和主流的 API 提供商(如 OpenAI、Azure、Ollama、Groq)。
-
混合 RAG 管道:提供默认的混合(全文和向量)检索器和重新排序,以确保最佳检索质量。
-
多模态问答支持:在多个包含图表和表格的文档上执行问答,支持多模态文档解析。
-
高级引用和文档预览:系统默认提供详细引用以确保 LLM 答案的正确性。可以在浏览器内的 PDF 查看器中直接查看引用(包括相关评分)并高亮显示。当检索管道返回低相关性文章时会发出警告。
-
支持复杂推理方法:使用问题分解来回答复杂/多跳问题。支持基于代理的推理方法,如 ReAct、ReWOO 和其他代理。
-
可扩展:基于 Gradio 构建,您可以随意自定义/添加任何 UI 元素。支持多种文档索引和检索策略,还提供了 GraphRAG 索引管道的示例。
kotaemon 使用示例
添加 AI 模型
文件上传
与文档聊天
信息面板
kotaemon 快速上手
为了方便大家快速体验 kotaemon 的功能,kotaemon 作者很贴心为我们提供了一个线上版本。
https://huggingface.co/spaces/cin-model/kotaemon-demo
除此之外,该项目也支持本地部署,提供了 App、Docker 部署和非 Docker 部署的方案。
安装 App
从 Github kotaemon 仓库的 releases 界面,下载最新的版本,目前最新版本是 v0.4.4。
App 安装步骤:
-
解压下载的文件。
-
导航到 scripts 文件夹并启动与您的操作系统匹配的安装程序:
-
Windows: 运行 run_windows.bat。只需双击该文件。
-
macOS: 运行 run_macos.sh
-
右键点击您的文件并选择“打开方式”和“其他”。
-
启用“所有应用程序”并选择“终端”。
-
注意:如果您希望始终使用终端打开该文件,请勾选“始终使用此方式打开”。
-
Linux: 运行 run_linux.sh。请在终端中使用 bash run_linux.sh 运行该脚本。
-
安装完成后,安装程序会询问是否启动 ktem 的 UI,回答继续。
-
如果启动,应用程序将自动在您的浏览器中打开。
Docker 部署
- 启动服务器
docker run \ -e GRADIO_SERVER_NAME=0.0.0.0 \ -e GRADIO_SERVER_PORT=7860 \ -p 7860:7860 -it --rm \ taprosoft/kotaemon:v1.0
- 打开应用
当服务器正常启动之后,在浏览器打开 http://localhost:7860/ 地址,即可以访问 kotaemon 内置的 Web UI。
https://github.com/Cinnamon/kotaemon
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。