SQL 中 GROUPING SETS 结合多个 COUNT(DISTINCT) 的数据膨胀问题与优化实践

目录

引言

一、数据膨胀的问题表现

1. 什么是数据膨胀?

2. 典型案例场景

二、数据膨胀的根本原因

1. 组合爆炸:分组维度指数级增长

2. 去重成本叠加:每个 COUNT(DISTINCT) 独立计算

3. 实际计算示例

三、优化方案与实践

1. 预聚合去重(核心方案)

优化原理

优化 SQL

优化效果

方法2:将COUNT(DISTINCT)操作提前到子查询中

2. 分步计算 + UNION ALL

优化原理

优化 SQL

优化效果

3. 近似计数(牺牲精度换性能)

优化原理

优化 SQL(以 Spark 为例)

优化效果

四、方案对比与选择建议

五、总结


面试提问:grouping__sets()多个维度中有多个count(distinct)会遇到什么问题?


引言

在大数据分析场景中,GROUPING SETS 是一种强大的多维度聚合工具,能够一次性生成多种分组组合的统计结果(如按地区、时间、全局总计等)。然而,当结合多个 COUNT(DISTINCT) 操作时,常常会遇到 数据膨胀 问题,导致查询性能急剧下降甚至任务失败。 本文将从理论到实践,深入剖析数据膨胀的根本原因,并提供多种优化方案。


一、数据膨胀的问题表现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值