图着色问题是一个著名的NP完全问题。给定无向图 G = (V, E),问可否用K种颜色为V中的每一个顶点分配一种颜色,使得不会有两个相邻顶点具有同一种颜色?
但本题并不是要你解决这个着色问题,而是对给定的一种颜色分配,请你判断这是否是图着色问题的一个解。
输入格式:
输入在第一行给出3个整数V(0 < V <= 500)、E(>= 0)和K(0 < K <= V),分别是无向图的顶点数、边数、以及颜色数。顶点和颜色都从1到V编号。随后E行,每行给出一条边的两个端点的编号。在图的信息给出之后,给出了一个正整数N(<= 20),是待检查的颜色分配方案的个数。随后N行,每行顺次给出V个顶点的颜色(第i个数字表示第i个顶点的颜色),数字间以空格分隔。题目保证给定的无向图是合法的(即不存在自回路和重边)。
输出格式:
对每种颜色分配方案,如果是图着色问题的一个解则输出“Yes”,否则输出“No”,每句占一行。
输入样例:6 8 3 2 1 1 3 4 6 2 5 2 4 5 4 5 6 3 6 4 1 2 3 3 1 2 4 5 6 6 4 5 1 2 3 4 5 6 2 3 4 2 3 4输出样例:
Yes Yes No
No
#include<stdio.h>
#include<string.h>
#include<set>
using namespace std;
int G[505][505];
int color[505];
void judge(int x)
{
int i,j;
for(i=1;i<=x;i++)
{
for(j=1;j<=x;j++)
{
if(G[i][j]!=0&&color[i]==color[j]){
printf("No\n");
return;
}
}
}
printf("Yes\n");
return;
}
int main()
{
int v,e,k,a,b,i,n,j;
memset(G,0,sizeof(G));
set<int> c;
scanf("%d%d%d",&v,&e,&k);
for(i=0;i<e;i++)
{
scanf("%d%d",&a,&b);
G[a][b]=1;
G[b][a]=1;
}
scanf("%d",&n);
for(i=0;i<n;i++)
{
memset(color,0,sizeof(color));
c.clear();
for(j=1;j<=v;j++)
{
scanf("%d",&color[j]);
c.insert(color[j]);
}
if(c.size()!=k)printf("No\n");
else judge(v);
}
}