L2-023. 图着色问题

图着色问题是一个著名的NP完全问题。给定无向图 G = (V, E),问可否用K种颜色为V中的每一个顶点分配一种颜色,使得不会有两个相邻顶点具有同一种颜色?

但本题并不是要你解决这个着色问题,而是对给定的一种颜色分配,请你判断这是否是图着色问题的一个解。

输入格式:

输入在第一行给出3个整数V(0 < V <= 500)、E(>= 0)和K(0 < K <= V),分别是无向图的顶点数、边数、以及颜色数。顶点和颜色都从1到V编号。随后E行,每行给出一条边的两个端点的编号。在图的信息给出之后,给出了一个正整数N(<= 20),是待检查的颜色分配方案的个数。随后N行,每行顺次给出V个顶点的颜色(第i个数字表示第i个顶点的颜色),数字间以空格分隔。题目保证给定的无向图是合法的(即不存在自回路和重边)。

输出格式:

对每种颜色分配方案,如果是图着色问题的一个解则输出“Yes”,否则输出“No”,每句占一行。

输入样例:
6 8 3
2 1
1 3
4 6
2 5
2 4
5 4
5 6
3 6
4
1 2 3 3 1 2
4 5 6 6 4 5
1 2 3 4 5 6
2 3 4 2 3 4
输出样例:
Yes
Yes
No

No

#include<stdio.h>
#include<string.h>
#include<set>
using namespace std;
int G[505][505];
int color[505];
void judge(int x)
{
    int i,j;
    for(i=1;i<=x;i++)
    {
        for(j=1;j<=x;j++)
        {
            if(G[i][j]!=0&&color[i]==color[j]){
                printf("No\n");
                return;
            }
        }
    }
    printf("Yes\n");
    return;
}
int main()
{
    int v,e,k,a,b,i,n,j;
    memset(G,0,sizeof(G));
    set<int> c;
    scanf("%d%d%d",&v,&e,&k);
    for(i=0;i<e;i++)
    {
        scanf("%d%d",&a,&b);
        G[a][b]=1;
        G[b][a]=1;
    }
    scanf("%d",&n);
    for(i=0;i<n;i++)
    {
        memset(color,0,sizeof(color));
        c.clear();
        for(j=1;j<=v;j++)
        {
            scanf("%d",&color[j]);
            c.insert(color[j]);
        }
        if(c.size()!=k)printf("No\n");
        else judge(v);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值