入侵检测相关文献泛读0810

本文概述了多种用于实时高级持续性威胁(APT)检测的方法,包括通过可疑信息流相关性的HOLMES系统,以及在工业控制系统中应用的异常检测框架。文章讨论了现有挑战,如从低级别警报到APT活动的转换,以及相关工作的进展,如加密流量特征生成、机器学习分类和基于图的异常识别。同时,提到了深度学习在加密流量分类中的应用,并探讨了半监督学习在入侵检测中的潜力。
摘要由CSDN通过智能技术生成

HOLMES: Real-time APT Detection through Correlation of Suspicious Information Flows

2019 S&P

一种新方法实现APT攻击识别

挑战

IDS或IPS识别异常事件很普遍,但从低级别的告警得到高级别的APT攻击活动仍很困难

现状

SIEM 安全信息事件集中管理系统

思路

一、将日志中的活动映射到杀伤链

二、识别与apt攻击相关的事件

三、设计一个高级别的情节图HSG,结点是匹配的战略、战术、技术,边是涉及对应ttp的信息流实体

在这里插入图片描述

相关工作

告警关联

BotHunter 基于异常

HERCULE 分散攻击步骤

告警生成

主机的入侵检测:误用、异常、基于具体方法的

A Systematic Framework to Generate Invariants for Anomaly Detection in Industrial Control Systems

2019 NDSS

提出一种新的基线规则来广泛的应用到工控场景,识别攻击

相关工作

LERAD 基于tcp会话学习规则,识别异常

Momtazpour 基于机器学习找到invariants 规则

Chen 利用突变程序和svm来找到invariants

Accumulated Generalized Mean Value – a New Approach to Flow-Based Feature Generation for Encrypted Traffic Characterization

CCWC 2021

提出一种预处理方法处理流特征

对比数据集提供的特征和本方法生成的特征做识别测验,显示识别召回率、准确率均大于90%

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值