介绍一个库——DeepChem,它是一个建立在Tensorflow平台之上的库,旨在帮助在生命科学中使用深度学习,对于分子处理,遗传数据集或显微数据集有特别的支持。
DeepChem与Tensorflow系统可以很好地集成,因此能将DeepChem代码与其他Tensorflow应用程序代码混合和匹配。
DeepChem不支持windows安装,目前仅支持linux及Mac,安装及使用可参考其官网:
DeepChemhttps://deepchem.io/官网上有丰富的使用方法,可查看详细教程。
这里举一个工作中可能用到的小demo(使用DeepChem来训练预测分子毒性的模型):
import numpy as np
import deepchem as dc
# 载入一个毒性数据集——特征化过程为将包含分子信息的数据集转换为矩阵和向量
tox21_tasks,tox21_datasets,transformers = dc.molnet.load_tox21()
# 查看一下数据
print(f'tox21_tasks:{tox21_tasks};tox21_datasetsL:{tox21_datasets}')
# 分割数据集
train_dataset,valid_dataset,test_da