深度学习可以分成5个部分:
1、连接模式
连接模式包括全连接、卷积、池化、残差,甚至inception。这些结构的相互连接组成了神经网络的框架。
2、非线性模块
正是因为神经网络具有非线性模块,多层神经网络在理论上是可以无限逼近任意的函数。如果没有非线性模块,即使再多的层结构堆叠,最后的作用也仅仅是相当于一个感知机。
常见的非线性模块有 tanh,sigmoid,ReLU,根据ReLU衍生出来的pReLU 等等。
ReLU是目前应用最为广泛的非线性激活函数。
缺点:*********
优点:*********
3、优化器
优化器是指在训练过程中,调整神经网络每层的参数,使得最后的输出结果最好,并优化调整参数的时间,也就是训练时间。常见的优化器有SGD(随机梯度下降),momentum等等。
4、损失函数
衡量优化器最后输出结果的好坏程度。优化器每次将一批训练样本迭代计算之后,会计算出一个结果,拿这个结果和实际标签的真实值进行对比,这两者之间一定会有差别,这个差值就是loss值。然后优化器将损失值再反向的传播回来,反向经过的每一层,再去调整每一层的参数,使得下次loss值降低。
计算loss值的方法也会直接影响到网络的性能,常见的有交叉熵损失,均方差损失。
对于细粒度分类中,例如人脸识别应用中的损失函数有:TripletLoss,Center Loss,A-softMax Loss,AM Loss。
介绍深度学习的组成
最新推荐文章于 2024-09-12 23:40:25 发布
本文介绍了深度学习的主要组成部分,包括连接模式(如全连接、卷积等)、非线性模块(如ReLU及其优缺点)、优化器(如SGD和momentum)、损失函数(如交叉熵和TripletLoss)以及超参数的优化。深度学习通过神经网络层层抽象,实现从原始输入到期望输出的端到端学习,解决了传统人工特征选择的问题,有望获得全局最优解。
摘要由CSDN通过智能技术生成