集群相关介绍(慎!纯文字)

本文详细介绍了Hadoop集群的部署模式(独立、伪分布式和完全分布式),其核心组件如HDFS和YARN的功能,以及为何推荐使用非root用户身份进行集群管理和权限控制。
摘要由CSDN通过智能技术生成

目录

一、Hadoop集群部署模式

二、Hadoop集群组成

三、HDFS集群和YARN集群介绍

四、推荐以hadoop身份控制集群


一、Hadoop集群部署模式

Hadoop集群的部署方式主要分为三种:独立模式(Standalone mode)、伪分布式模式(Pseudo-Distributed mode)和完全分布式模式(Cluster mode)。

  1. 独立模式(Standalone mode):也称为单机模式,在这种模式下,Hadoop集群的所有程序都在单个JVM上执行,无需运行任何守护进程。该模式主要用于开发和调试MapReduce程序,因为它提供了一种简单且方便的方式来测试代码。然而,由于它只在一个JVM上运行,因此无法充分利用多节点集群的计算资源
  2. 伪分布式模式(Pseudo-Distributed mode):在这种模式下,Hadoop的守护进程(如NameNode、DataNode、ResourceManager、NodeManager等)都运行在一台主机上,但它们各自启动单独的Java进程来模拟分布式环境。这种部署方式通常用于调试Hadoop分布式程序的代码,以及验证程序执行的正确性。伪分布式模式是完全分布式模式的一个特例,它允许在单台机器上模拟多节点集群的行为。
  3. 完全分布式模式(Cluster mode)这是Hadoop在生产环境中的标准部署方式。在这种模式下,Hadoop的守护进程分别运行在由多台主机搭建的集群上,不同的节点担任不同的角色(如主节点和从节点)。这种部署方式可以充分利用集群中每台机器的计算和存储资源,提供高可用性和容错性。完全分布式模式适用于大规模数据处理和分析任务,能够处理PB级别甚至更大的数据集

在选择Hadoop集群的部署方式时,需要根据实际需求和环境进行权衡。独立模式和伪分布式模式主要用于开发和调试阶段,而完全分布式模式则适用于生产环境。随着数据处理规模的扩大和复杂性的增加,完全分布式模式将成为更为合适的选择。

二、Hadoop集群组成

  1. HDFS(Hadoop Distributed File System,Hadoop分布式文件系统):这是Hadoop集群的基础,用于存储大规模数据集。HDFS采用主从结构,由一个NameNode和多个DataNode组成。NameNode负责管理整个集群的元数据,包括文件系统的命名空间、文件的目录结构、权限信息等,并定期将其写入磁盘持久化。DataNode则负责存储实际的数据块,并定期向NameNode报告自己的存储容量和健康状态。
  2. YARN(Yet Another Resource Negotiator):YARN是Hadoop的资源管理器,负责管理和调度集群中的计算资源。它主要由ResourceManagerNodeManager组成。ResourceManager负责整个集群资源的统一管理和任务调度,而NodeManager则负责管理和监控本地资源,并根据ResourceManager的指示启动、停止或移动容器。
  3. MapReduceMapReduce是Hadoop的计算模型和处理框架,它将作业分解为多个并行的Map和Reduce任务,并自动处理作业的并行化和故障恢复。

除了上述核心组件外,Hadoop集群还可能包括其他辅助组件,如Secondary NameNode(辅助主节点),用于定期合并NameNode的编辑日志和内存镜像,并生成新的镜像文件;以及Client(客户端),通过Hadoop提供的API向集群提交作业,并获取执行结果。

综上所述,Hadoop集群是一个复杂的分布式计算系统,通过各个组件的协同工作,实现对大规模数据的高效处理和分析。

三、HDFS集群和YARN集群介绍

HDFS集群和YARN集群是两个不同的东西

HDFS集群主要负责海量数据的存储。HDFS,即Hadoop分布式文件系统,是一个可靠且高度可扩展的文件系统,旨在存储大型数据集,并提供数据访问和处理的方法。它将数据分成块,并将每个块分别存储在集群中的不同节点上,以实现数据的冗余备份和容错性

YARN集群则主要负责海量数据运算时的资源调度。YARN,即Yet Another Resource Negotiator,是一个通用的资源管理平台,可为各类计算框架提供资源的管理和调度。YARN的核心出发点是为了分离资源管理与作业调度/监控,它通过将多种计算框架(如MapReduce、Spark等)部署到一个公共集群中,共享集群的资源,实现资源的高效利用。

简单来说,HDFS集群关注数据的存储,而YARN集群则关注资源的管理和调度,两者在Hadoop集群中协同工作,以实现大规模数据的高效存储和处理。

HDFS集群是Hadoop集群的一部分。Hadoop集群主要由HDFS(Hadoop Distributed File System,Hadoop分布式文件系统)和YARN(Yet Another Resource Negotiator,另一种资源协调者)两大组件构成。

因此,可以说HDFS集群是Hadoop集群的一个重要组成部分,它与其他组件(如YARN)共同协作,构成了完整的Hadoop集群,用于处理大规模数据集。

四、推荐以hadoop身份控制集群

在Hadoop集群中,以root身份直接控制集群通常是不推荐的。

Hadoop的官方文档和社区最佳实践都建议避免使用root用户来启动、配置或管理Hadoop集群。

原因主要有以下几点:

  1. 安全风险:root用户拥有系统的最高权限,如果Hadoop进程以root用户身份运行,那么任何潜在的安全漏洞或错误都可能导致严重的系统损害。
  2. 资源隔离问题:Hadoop集群需要良好的资源隔离以确保稳定性和性能。使用root用户可能会破坏这种隔离,使得不同的Hadoop服务之间或与其他系统服务之间产生不必要的冲突。
  3. 管理复杂性:在大型或复杂的集群环境中,使用root用户进行管理会增加管理的复杂性。这包括权限管理、错误排查和系统维护等方面。

相反,Hadoop推荐的做法是创建一个专门的Hadoop用户(例如,名为hadoop的用户),并使用该用户来启动、配置和管理Hadoop集群。这个专门的用户应该具有足够的权限来执行必要的操作,但又不会拥有过多的权限,从而降低了安全风险。

如果你确实需要以某种方式控制集群(例如,进行配置更改或管理任务),那么最好是以这个专门的Hadoop用户的身份来进行,而不是使用root用户。这样,你可以确保集群的安全性和稳定性,同时降低管理复杂度。

此外,对于权限管理,Hadoop提供了丰富的配置选项,允许你精确地控制哪些用户可以执行哪些操作。你可以通过配置HDFS和YARN的权限设置来实现这一点,确保只有经过授权的用户才能访问和管理集群资源。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值