语言模型可以用来评估文本序列是否合理,即计算该序列的概率:P(w1,w2,...,wT)P(w_1,w_2,...,w_T)P(w1,w2,...,wT)。其中基于统计的语言模型(马尔科夫链模型)被广泛应用于自然语言处理中。本文将简单介绍下马尔科夫链的理论以及输入数据集的形式。
语言模型
- 语言模型
假设存在序列(w1,w2,...,wT)(w_1,w_2,...,w_T)(w1,w2,...,wT),则其会出现的概率为
P(w1,w2,...,wT)=∏i=tTP(wt∣w1,w2,...,wt−1)=P(w1)P(w2∣w1)P(w3∣w1w2)...P(wT∣w1w2...wT−1) \begin{aligned} P(w_1,w_2,...,w_T)&=\prod_{i=t}^{T}{P(w_t|w_1,w_2,...,w_{t-1})}\\ &=P(w_1)P(w_2|w_1)P(w_3|w_1w_2)...P(w_T|w_1w_2...w_{T-1}) \end{aligned} P(w1,w2,...,wT)=i=t∏TP(wt∣w1,w2,...,wt−1)=P(w1)P(w2∣w1)P(w3∣w1w2)...P(wT∣w1w2...wT−1)
对于具体的某一语料库,词的概率可以通过该词在训练数据集中的相对词频来计算。 - n阶马尔科夫链
上面提出的模型被称为n元语法,这存在两个问题:参数空间过大和数据稀疏。前者指的是如w1w_1w1和w1w2w_1w_2w1w2等都会组合成一个新的参数,这样搭配出的参数个数将十分巨大;后者指的是具体训练集中很难找到满足wTw_TwT前有w1,w2,...,wT−1w_1,w_2,...,w_{T-1}w1,w2,...,wT−1的词,词频会很低。要解决这个问题,就要用到马尔科夫假设。
n-1阶马尔科夫链模型是基于这样的假设:当前这个词的出现只跟前面n-1个词的相关。举个栗子,当n=2时:P(w3∣w1,w2)=P(w3∣w2)P(w_3|w_1,w_2)=P(w_3|w_2)P(w3∣w1,w2)=P(w3∣w2)。
输入数据集
- 读取数据集
with open('/home/kesci/input/jaychou_lyrics4703/jaychou_lyrics.txt') as f:
corpus_chars = f.read()
print(len(corpus_chars))
print(corpus_chars[: 40])
corpus_chars = corpus_chars.replace('\n', ' ').replace('\r', ' ')
corpus_chars = corpus_chars[: 10000]
"""
63282
想要有直升机
想要和你飞到宇宙去
想要和你融化在一起
融化在宇宙里
我每天每天每
"""
- 建立字符索引
idx_to_char = list(set(corpus_chars)) # 去重,得到索引到字符的映射
char_to_idx = {char: i for i, char in enumerate(idx_to_char)} # 字符到索引的映射
vocab_size = len(char_to_idx)
print(vocab_size)
corpus_indices = [char_to_idx[char] for char in corpus_chars] # 将每个字符转化为索引,得到一个索引的序列
sample = corpus_indices[: 20]
print('chars:', ''.join([idx_to_char[idx] for idx in sample]))
print('indices:', sample)
"""
1027
chars: 想要有直升机 想要和你飞到宇宙去 想要和
indices: [1022, 648, 1025, 366, 208, 792, 199, 1022, 648, 641, 607, 625, 26, 155, 130, 5, 199, 1022, 648, 641]
"""
这里需要指出,在前面文本预处理的章节中已经封装了分词、建立映射和转化的工具函数。
时序数据的采样
训练过程每次需要随机读取小批量样本与标签,时序数据的一个样本通常包含连续的字符,这个取决于时间步数的设定。不过对于一个时序数据,长度为T,时间步数为n的情况下,会有T-n个样本,这些样本存在大量的重合,所以需要高效的采样方法,这里介绍两个:随机采样和相邻采样。
- 随机采样
import torch
import random
def data_iter_random(corpus_indices, batch_size, num_steps, device=None):
# 减1是因为对于长度为n的序列,X最多只有包含其中的前n - 1个字符
num_examples = (len(corpus_indices) - 1) // num_steps # 下取整,得到不重叠情况下的样本个数
example_indices = [i * num_steps for i in range(num_examples)] # 每个样本的第一个字符在corpus_indices中的下标
print(example_indices)
random.shuffle(example_indices) #随机采样的关键在于这里
print(example_indices)
def _data(i):
# 返回从i开始的长为num_steps的序列
return corpus_indices[i: i + num_steps]
if device is None:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
for i in range(0, num_examples, batch_size):
print(num_examples,batch_size,i)
# 每次选出batch_size个随机样本
batch_indices = example_indices[i: i + batch_size] # 当前batch的各个样本的首字符的下标
X = [_data(j) for j in batch_indices]
Y = [_data(j + 1) for j in batch_indices]
yield torch.tensor(X, device=device), torch.tensor(Y, device=device)
my_seq = list(range(30))
for X, Y in data_iter_random(my_seq, batch_size=2, num_steps=6):
print('X: ', X, '\nY:', Y, '\n')
"""
[0, 6, 12, 18]
[0, 18, 6, 12]
4 2 0
X: tensor([[ 0, 1, 2, 3, 4, 5],
[18, 19, 20, 21, 22, 23]])
Y: tensor([[ 1, 2, 3, 4, 5, 6],
[19, 20, 21, 22, 23, 24]])
4 2 2
X: tensor([[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17]])
Y: tensor([[ 7, 8, 9, 10, 11, 12],
[13, 14, 15, 16, 17, 18]])
"""
- 相邻采样
def data_iter_consecutive(corpus_indices, batch_size, num_steps, device=None):
if device is None:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
corpus_len = len(corpus_indices) // batch_size * batch_size # 保留下来的序列的长度
corpus_indices = corpus_indices[: corpus_len] # 仅保留前corpus_len个字符
indices = torch.tensor(corpus_indices, device=device)
print(indices)
indices = indices.view(batch_size, -1) # resize成(batch_size, ),相邻采样的关键
print(indices)
batch_num = (indices.shape[1] - 1) // num_steps
print(batch_num)
for i in range(batch_num):
i = i * num_steps
print(i)
X = indices[:, i: i + num_steps]
Y = indices[:, i + 1: i + num_steps + 1]
yield X, Y
my_seq = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
for X, Y in data_iter_consecutive(my_seq, batch_size=2, num_steps=2):
print('X: ', X, '\nY:', Y, '\n')
"""
tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
tensor([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]])
2
0
X: tensor([[0, 1],
[5, 6]])
Y: tensor([[1, 2],
[6, 7]])
2
X: tensor([[2, 3],
[7, 8]])
Y: tensor([[3, 4],
[8, 9]])
"""
有些话说
老规矩,问几个问题:
- n元语法语言模型是什么,它的缺点是什么?马尔科夫链是什么?
- 对时间序列数据采样的意义?随机采样与相邻采样实现方式上的区别?yield关键字的作用?