动手学深度学习之语言模型与数据集

语言模型可以用来评估文本序列是否合理,即计算该序列的概率:P(w1,w2,...,wT)P(w_1,w_2,...,w_T)P(w1,w2,...,wT)。其中基于统计的语言模型(马尔科夫链模型)被广泛应用于自然语言处理中。本文将简单介绍下马尔科夫链的理论以及输入数据集的形式。

语言模型

  1. 语言模型
    假设存在序列(w1,w2,...,wT)(w_1,w_2,...,w_T)(w1,w2,...,wT),则其会出现的概率为
    P(w1,w2,...,wT)=∏i=tTP(wt∣w1,w2,...,wt−1)=P(w1)P(w2∣w1)P(w3∣w1w2)...P(wT∣w1w2...wT−1) \begin{aligned} P(w_1,w_2,...,w_T)&=\prod_{i=t}^{T}{P(w_t|w_1,w_2,...,w_{t-1})}\\ &=P(w_1)P(w_2|w_1)P(w_3|w_1w_2)...P(w_T|w_1w_2...w_{T-1}) \end{aligned} P(w1,w2,...,wT)=i=tTP(wtw1,w2,...,wt1)=P(w1)P(w2w1)P(w3w1w2)...P(wTw1w2...wT1)
    对于具体的某一语料库,词的概率可以通过该词在训练数据集中的相对词频来计算。
  2. n阶马尔科夫链
    上面提出的模型被称为n元语法,这存在两个问题:参数空间过大数据稀疏。前者指的是如w1w_1w1w1w2w_1w_2w1w2等都会组合成一个新的参数,这样搭配出的参数个数将十分巨大;后者指的是具体训练集中很难找到满足wTw_TwT前有w1,w2,...,wT−1w_1,w_2,...,w_{T-1}w1,w2,...,wT1的词,词频会很低。要解决这个问题,就要用到马尔科夫假设。
    n-1阶马尔科夫链模型是基于这样的假设:当前这个词的出现只跟前面n-1个词的相关。举个栗子,当n=2时:P(w3∣w1,w2)=P(w3∣w2)P(w_3|w_1,w_2)=P(w_3|w_2)P(w3w1,w2)=P(w3w2)

输入数据集

  1. 读取数据集
with open('/home/kesci/input/jaychou_lyrics4703/jaychou_lyrics.txt') as f:
    corpus_chars = f.read()
print(len(corpus_chars))
print(corpus_chars[: 40])
corpus_chars = corpus_chars.replace('\n', ' ').replace('\r', ' ')
corpus_chars = corpus_chars[: 10000]
"""
63282
想要有直升机
想要和你飞到宇宙去
想要和你融化在一起
融化在宇宙里
我每天每天每
"""
  1. 建立字符索引
idx_to_char = list(set(corpus_chars)) # 去重,得到索引到字符的映射
char_to_idx = {char: i for i, char in enumerate(idx_to_char)} # 字符到索引的映射
vocab_size = len(char_to_idx)
print(vocab_size)

corpus_indices = [char_to_idx[char] for char in corpus_chars]  # 将每个字符转化为索引,得到一个索引的序列
sample = corpus_indices[: 20]
print('chars:', ''.join([idx_to_char[idx] for idx in sample]))
print('indices:', sample)
"""
1027
chars: 想要有直升机 想要和你飞到宇宙去 想要和
indices: [1022, 648, 1025, 366, 208, 792, 199, 1022, 648, 641, 607, 625, 26, 155, 130, 5, 199, 1022, 648, 641]
"""

这里需要指出,在前面文本预处理的章节中已经封装了分词、建立映射和转化的工具函数。

时序数据的采样

训练过程每次需要随机读取小批量样本与标签,时序数据的一个样本通常包含连续的字符,这个取决于时间步数的设定。不过对于一个时序数据,长度为T,时间步数为n的情况下,会有T-n个样本,这些样本存在大量的重合,所以需要高效的采样方法,这里介绍两个:随机采样和相邻采样。

  1. 随机采样
import torch
import random
def data_iter_random(corpus_indices, batch_size, num_steps, device=None):
    # 减1是因为对于长度为n的序列,X最多只有包含其中的前n - 1个字符
    num_examples = (len(corpus_indices) - 1) // num_steps  # 下取整,得到不重叠情况下的样本个数
    example_indices = [i * num_steps for i in range(num_examples)]  # 每个样本的第一个字符在corpus_indices中的下标
    print(example_indices)
    random.shuffle(example_indices)  #随机采样的关键在于这里
    print(example_indices)

    def _data(i):
        # 返回从i开始的长为num_steps的序列
        return corpus_indices[i: i + num_steps]
    if device is None:
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    for i in range(0, num_examples, batch_size):
        print(num_examples,batch_size,i)
        # 每次选出batch_size个随机样本
        batch_indices = example_indices[i: i + batch_size]  # 当前batch的各个样本的首字符的下标
        X = [_data(j) for j in batch_indices]
        Y = [_data(j + 1) for j in batch_indices]
        yield torch.tensor(X, device=device), torch.tensor(Y, device=device)

my_seq = list(range(30))
for X, Y in data_iter_random(my_seq, batch_size=2, num_steps=6):
    print('X: ', X, '\nY:', Y, '\n')
"""
[0, 6, 12, 18]
[0, 18, 6, 12]
4 2 0
X:  tensor([[ 0,  1,  2,  3,  4,  5],
        [18, 19, 20, 21, 22, 23]]) 
Y: tensor([[ 1,  2,  3,  4,  5,  6],
        [19, 20, 21, 22, 23, 24]]) 

4 2 2
X:  tensor([[ 6,  7,  8,  9, 10, 11],
        [12, 13, 14, 15, 16, 17]]) 
Y: tensor([[ 7,  8,  9, 10, 11, 12],
        [13, 14, 15, 16, 17, 18]]) 
"""
  1. 相邻采样
def data_iter_consecutive(corpus_indices, batch_size, num_steps, device=None):
    if device is None:
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    corpus_len = len(corpus_indices) // batch_size * batch_size  # 保留下来的序列的长度
    corpus_indices = corpus_indices[: corpus_len]  # 仅保留前corpus_len个字符
    indices = torch.tensor(corpus_indices, device=device)
    print(indices)
    indices = indices.view(batch_size, -1)  # resize成(batch_size, ),相邻采样的关键
    print(indices)
    batch_num = (indices.shape[1] - 1) // num_steps
    print(batch_num)
    for i in range(batch_num):
        i = i * num_steps
        print(i)
        X = indices[:, i: i + num_steps]
        Y = indices[:, i + 1: i + num_steps + 1]
        yield X, Y

my_seq = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
for X, Y in data_iter_consecutive(my_seq, batch_size=2, num_steps=2):
    print('X: ', X, '\nY:', Y, '\n')

"""
tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
tensor([[0, 1, 2, 3, 4],
        [5, 6, 7, 8, 9]])
2
0
X:  tensor([[0, 1],
        [5, 6]]) 
Y: tensor([[1, 2],
        [6, 7]]) 

2
X:  tensor([[2, 3],
        [7, 8]]) 
Y: tensor([[3, 4],
        [8, 9]])
"""

有些话说

老规矩,问几个问题:

  1. n元语法语言模型是什么,它的缺点是什么?马尔科夫链是什么?
  2. 对时间序列数据采样的意义?随机采样与相邻采样实现方式上的区别?yield关键字的作用?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值