动手深度学习笔记(四十七)8.3. 语言模型和数据集

136 篇文章 116 订阅 ¥29.90 ¥99.00
94 篇文章 12 订阅
本文探讨了语言模型在自然语言处理中的重要性,介绍了如何学习和建模语言,包括一阶马尔可夫模型、n元语法以及自然语言统计分析。通过实例解释了如何处理长序列数据,如随机采样和顺序分区策略,同时讨论了拉普拉斯平滑在处理低频词组中的应用。此外,还提出了齐普夫定律在单词和n元语法分布中的影响。
摘要由CSDN通过智能技术生成

8.3. 语言模型和数据集

8.2节中, 我们了解了如何将文本数据映射为词元, 以及将这些词元可以视为一系列离散的观测,例如单词或字符。 假设长度为 T T T的文本序列中的词元依次为 x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

落花逐流水

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值