目录
什么是数据分析:
观测 实验 应用
-
观测:对事物形成客观量化的认知。
用技术手段获取数据,并对数据进行分析和测量。目的是对事物形成客观量化的认知。简单理解为获取数据,并做成报表、图表、仪表盘等。
观测的第一步就是设定标准,要知道怎样的数据是正常的,出现问题时能知道异常。
-
观察:采集数据、存储数据、展示数据
-
采集数据:解析系统日志、埋点获取新数据(基于系统日志新增处理的过程称为埋点,最可控可靠的方式)、通过传感器采集、API应用程序接口(按照规则提供数据,需要代码实现)
-
存储数据:各种类型的数据库(HSQL、MySQL、PostgreSQL、SQL Server、Presto、Impala……)
-
-
测量:设定标准、发现异常、研究关系
-
-
实验:发现规律、验证假设。
通过不断提出假设、实践假设,并基于观测的数据去验证假设。目的是准确得知哪些方法可以有效的让事物朝着人为设定的方向发展。
提合理假设,对疑问进行解释。验证假设,如果假设成立,就找到问题的答案。所有未经事实数据验证的想法都是假设。
-
拆解问题、提出假设、设计实验
-
收集数据、分析数据、验证假设
-
-
应用:不断基于数据反馈迭代产品
在实际生产环境下使用已经得到的技术和方法,并基于数据不断迭代与反馈的实验。
-
指定策略、实施策略、反馈迭代
-
训练算法、优化算法、使用算法
如何应用数据创造价值?
-
基于数据反馈不断迭代产品和业务策略:让业务看到数据,及时发现异常。
-
基于数据训练算法,让机器自动化完成工作
-
做任何业务分析,要明确业务的目标,去拆解业务目标。
拆解业务目标的方法:
-
流程拆解法
-
流程法就是按照事情发展的时间、流程、顺序,对过程进行逐一的拆解。 如:进行拆解用户购买商品的流程环节:看到广告–>点进商品–>点击购买–>完成支付–>订单量下降 类似于漏斗分析法,是一套流程分析,适用于流程长,环节较多,并且随着环节的进行,留存率越来越少的场景。
-
-
二分法
-
非常常见的一种方法,就是把事物分成A和非A两个部分,如“白天,黑夜”,“内部、外部”等等
-
-
象限拆解法
-
通过横纵坐标,将所要分析的内容分成四个象限,由高到低进行分析。 有利于找到问题的共性原因:通过象限分析法,将有相同特征的事件进行归因分析,总结其中的共性原因。 建立分组优化策略:针对投放的象限分析法,可以针对不同象限建立优化策略。
-
-
杜邦分析法
-
杜邦分析法(DuPont Analysis)是利用几种主要的财务比率之间的关系来综合地分析企业的财务状况。具体来说,它是一种用来评价公司盈利能力和股东权益回报水平,从财务角度评价企业绩效的一种经典方法。其基本思想是将企业净资产收益率逐级分解为多项财务比率乘积,这样有助于深入分析比较企业经营业绩。由于这种分析方法最早由美国杜邦公司使用,故名杜邦分析法。 杜邦分析法中有一个核心概念:ROE,return on equity,即净资产收益率,或净资产回报率。ROE衡量的是企业的赚钱的能力。
-
拆解框架:
-
AARRR
-
AARRR是一个用于研究用户增长的数据分析模型,是Acquisition、Activation、Retention、Revenue、Refer,这个五个单词的缩写,分别对应用户生命周期中的用户获取、用户激活、用户留存、获得收益、推荐传播这5个重要环节。
-
用户获取(Acquisition) 运营一款移动应用的第一步,毫无疑问是获取用户,也就是大家通常所说的推广。如果没有用户,就谈不上运营。
-
用户激活(Activation)
很多用户可能是通过终端预置、广告等不同的渠道进入应用的,这些用户是被动地进入应用的。如何把他们转化为活跃用户,是运营者面临的第一个问题。
当然,这里面一个重要的因素是推广渠道的质量。差的推广渠道带来的是大量的一次性用户,也就是那种启动一次,但是再也不会使用的用户。严格意义上说,这种不能算是真正的用户。好的推广渠道往往是有针对性地圈定了目标人群,他们带来的用户和应用设计时设定的目标人群有很大吻合度,这样的用户通常比较容易成为活跃用户。另外,挑选推广渠道的时候一定要先分析自己应用的特性(例如是否小众应用)以及目标人群。对别人来说是个好的推广渠道,对你却不一定合适。
另一个重要的因素是产品本身是否能在最初使用的几十秒钟内抓住用户。再有内涵的应用,如果给人的第一印象不好,也会“相亲”失败,成为“娶不到媳妇的老大难”。
-
用户留存(Retention)
有些应用在解决了活跃度的问题以后,又发现了另一个问题:“用户来得快、走得也快”。有时候我们也说是这款应用没有用户粘性。
我们都知道,通常保留一个老客户的成本要远远低于获取一个新客户的成本。所以狗熊掰玉米(拿一个、丢一个)的情况是应用运营的大忌。但是很多应用确实并不清楚用户是在什么时间流失的,于是一方面他们不断地开拓新用户,另一方面又不断地有大量用户流失。
解决这个问题首先需要通过日留存率、周留存率、月留存率等指标监控应用的用户流失情况,并采取相应的手段在用户流失之前,激励这些用户继续使用应用。
留存率跟应用的类型也有很大关系。通常来说,工具类应用的首月留存率可能普遍比游戏类的首月留存率要高。
-
获得收益(Revenue)
获取收入其实是应用运营最核心的一块。极少有人开发一款应用只是纯粹出于兴趣,绝大多数开发者最关心的就是收入。即使是免费应用,也应该有其盈利的模式。
收入有很多种来源,主要的有三种:付费应用、应用内付费、以及广告。付费应用在国内的接受程度很低。在国内,广告是大部分开发者的收入来源,而应用内付费在游戏行业应用比较多。
无论是以上哪一种,收入都直接或间接来自用户。所以,前面所提的提高活跃度、提高留存率,对获取收入来说,是必需的基础。用户基数大了,收入才有可能上量。
-
推荐传播(Referral) 以前的运营模型到第四个层次就结束了,但是社交网络的兴起,使得运营增加了一个方面,就是基于社交网络的病毒式传播,这已经成为获取用户的一个新途径。这个方式的成本很低,而且效果有可能非常好;唯一的前提是产品自身要足够好,有很好的口碑。
从自传播到再次获取新用户,应用运营形成了一个螺旋式上升的轨道。而那些优秀的应用就很好地利用了这个轨道,不断扩大自己的用户群体。
-
-
-
RFM
RFM 是指根据客户活跃程度和交易金额贡献,进行客户价值细分的一种方法。
对于一个新上线产品的前期运营,我们一般的做法都是做活动、上新品、蹭热点、做营销、不断地去拓展新的客户。但是这种做法收效却不容乐观,真正获取的用户没有几个,最终都便宜了羊毛党。其实客户在不同阶段的需求是不一样的,有的客户图便宜,有的客户看新品,有的客户重服务。所以我们想要运营好一个产品,就需要对客户精细化运营。
-
SWOT
SWOT分析法代表企业优势(strength)、劣势(weakness)、机会(opportunity)和威胁(threats)。因此,SWOT分析实际上是将对企业内部外条件各方面进行综合和概括,进而分析组织的优劣势,面临的机会和威胁的一种方法,可以通过分析帮助企业把资源和行动集中在自己的强项和有最多机会的地方。
-
5W1H
即:Who(分析谁)、Where(取哪里的数据)、When(取什么时间段的数据)、What(用什么分析方法)、Why(什么原因导致的)、How(如何呈现最终结果)
-
Who 分析谁?确定分析主题。
-
Where 取哪里的数据?进行数据集成。
-
When 取什么时间段的数据?
-
What 用什么分析方法?
-
Why 是什么原因导致的问题?
-
How 如何呈现分析结果
-
拆解只要符合MECE分析法即可。
MECE分析法:
-
MECE,是Mutually Exclusive Collectively Exhaustive,中文意思是“相互独立,完全穷尽”。也就是对于一个重大的议题,能够做到不重叠、不遗漏的分类,而且能够借此有效把握问题的核心,并解决问题的方法。
-
MECE分类的五个方法
-
二分法:二分法在日常生活中比较常见,其实就是把事物分成 A 和非 A 两个部分,如“白天、黑夜”、“男人、女人”、“国内、国外”、“内部、外部”等等。
-
流程法:流程法就是按照事情发展的时间、流程、程序,对过程进行逐一的拆解。
例如,景泰蓝的制作可以分为七个步骤:做胎、掐丝、烧制、点蓝、烧蓝、打磨、镀金。
-
要素法:主要用于事物由哪些要素(或部分)组成,把一个整体分成不同的构成部分;但是,在拆解要素时要保持维度的一致性,否则有可能出现有重叠和遗漏的问题。
-
公式法:按照公式设计的要素进行分类,公式若成立,那么要素的分类就符合MECE原则。比如 GMV=客流量X客单价
-
矩阵法:事物按二维矩阵进行分类或划分,例如说时间管理中常用的紧急且重要、紧急不重要、不紧急但重要、不紧急也不重要的分类方法就是典型的矩阵法。
-
为什么要分析数据?
在商业场景下,分析的目的有两个:
-
及时发现异常:事情没有按照预期发展,第一时间要从数据得到结论,赶紧把问题解决。
-
找到数据之间的因果关系:根据数据,我们要明确知道做什么能提升什么。
数据分析两个方向:
-
将数据应用于业务:
-
明确目标,拆解目标,观测数据。
-
发现异常,思考异常的原因,拆解问题,提出可以解决问题或优化业务的假设,基于数据验证假设。
-
没有数据,则做bi测试,通过实验获取数据后再验证;有数据,则直接拿出来验证。
-
一旦假设被验证,就意味找到了可以解决问题或提升业务的方法了。有这些方法就可以实际制定业务策略。
-
如果是产品改动,只需要不断去上线表现更好数据的产品版本;而如果是业务改动,则需要把新的业务方法准确的传达给业务的核心人员,并且确保改动被有效实施。
-
接下来不断观测改动后的数据,继续提出优化和迭代。
-
不断迭代 飞速发展。
-
-
将数据应用于算法:
-
为算法设定明确目标
-
为算法提供质量的数据
-
判断算法是否真的创造了实际价值
-
帮助业务更好的使用算法
训练算法,让机器自动化完成工作。现在所有的流量平台都基于用户的行为数据,通过算法为用户提供感兴趣的内容。算法越精准,用户就越多。
-
要么基于数据优化业务,要么基于数据优化算法。