《基石之石》系列之数学基础:集合

《基石之石》系列是基础中的基础,比如学习数学中的集合或者微积分,甚至微积分里面的导数的由来,内容涉及初中高中大学研究生以及我不知道怎么分类(滑稽)的内容。

       但是由于最近在复习“费曼技巧”(https://blog.csdn.net/goodmorning2014/article/details/83109985),所以希望能将这些东西以自己的理解方式进行表述,对于公式还是以原先的公式模式,只是比喻或者举例不同。并且是不断写的,在用到时就会写上,所以更偏向于随笔,不一定成体系,之后会系统整理在《基石》中。在此有说错地方,望请指正。

       此为第一篇:集合。

 


1.二元关系

    定义:对于集合A和集合B(集合A和B内都是有序对且不为空),R为笛卡尔积AxB的一个子集,那么我们可以将(a,b)R写成aRb,那么R在这里我们就称为集合A上的一个二元关系,由以下例子(来自维基百科https://zh.wikipedia.org/wiki/%E4%BA%8C%E5%85%83%E5%85%B3%E7%B3%BB)可以得知,意味着R也是AXA的一个子集,即R作为子集包含了A本身。

   1.1自反关系与反自反关系

 自反关系

  定义1 令R是A上的二元关系,若对于A中的每个  都有  ,则称R具有自反性(或称R是自反关系)。

   即R是A上的自反关系  。 

             比如集合A {1,1} 集合B{1,2,3}那么AXB的集合为{(1,1),(1,2),(1,3),(1,1),(1,2),(1,3)};R作为其子集假设为{(1,1)},那么对于A中的x假设为1,都有(1,1)R,那么就称R具有自反性

   定义2 令R是A上的二元关系,若不存在A中的  ,使得  ,则称R具有反自反性(或称R是反自反关系)。

即R是A上的反自反关系  。

              比如集合A {4,5} 集合B{2,3}那么AXB的集合为{(4,2),(4,3),(5,2),(5,3)};R作为其子集假设为{(,4,2)},那么对于A中的x假设为4,都有(4,4)R,那么就称R具有反自反性

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值