自动驾驶笔记
文章平均质量分 87
构图笔记
分享前沿技术,拓展职场技能
展开
-
2.4.1.2 张正友相机标定法
传统标定法的标定板是需要三维的,需要非常精确,这很难制作,而张正友教授提出的方法介于传统标定法和自标定法之间,但克服了传统标定法需要的高精度标定物的缺点,而仅需使用一个打印出来的棋盘格就可以。理论上镜头的畸变包括径向畸变和切向畸变,切向畸变影响较小,通常只考虑径向畸变,而且在径向畸变的求解中,仅考虑了起主导的二元泰勒级数展开的前两个系数。矩阵中未知的5个参数。相机标定指建立相机图像像素位置与场景点位置之间的关系,根据相机成像模型,由特征点在图像中坐标与世界坐标的对应关系,求解相机模型的参数。原创 2024-03-10 10:46:22 · 2608 阅读 · 0 评论 -
2.4.1.1 相机内参标定
相机内参标定主要是为了获取相机本身的性质参数,包括相机的焦距,光心以及畸变参数等原创 2024-02-18 18:26:41 · 672 阅读 · 0 评论 -
2.3.1 V2X
V2X(Vehicle-to-Everything),是车和外界进行通信互联的技术。V2X是车联网的重要组成部分,主要目的是为了保障道路安全、提高交通效率和节省汽车能源原创 2024-02-16 10:03:28 · 446 阅读 · 0 评论 -
2.2 计算单元
大部分的无人驾驶计算平台都采用了异构平台的设计,无人驾驶车在CPU上运行操作系统和处理通用计算任务,在GPU上运行深度模型感知任务原创 2024-02-13 09:34:48 · 916 阅读 · 1 评论 -
2.1.6 IMU惯性传感器
惯性测量单元IMU(Inertial Measurement Unit)。是一种用来测量物体三轴姿态角(或角速率)以及加速度的装置。一般IMU包括三轴陀螺仪及三轴加速度计,某些9轴IMU还包括三轴磁力计原创 2024-02-11 16:08:38 · 499 阅读 · 1 评论 -
2.1.5 GPS定位导航
GPS导航系统具备全天候服务能力,不受天气影响,全球覆盖,定位速度快,精度高,应用广泛,已形成了庞大的空间导航定位产业链原创 2024-02-11 15:57:28 · 840 阅读 · 1 评论 -
2.1.4 超声波雷达
超声波雷达的工作原理是通过超声波发射装置向外发出超声波,到通过接收器接收到发送过来超声波时的时间差来测算距离原创 2024-02-11 15:36:02 · 1011 阅读 · 1 评论 -
2.1.1 摄像头
摄像头是目前自动驾驶车中应用和研究最广泛的传感器,其采集图像的过程最接近人类视觉系统。基于图像的物体检测和识别技术已经相当成熟,随着近几年深度学习的发展,基于深度学习的视觉感知算法已大量应用于实际生活和生产中,在某些任务上甚至已经超越人类水平。在自动驾驶车上,一般会安装多个摄像头,兼顾不同的视角和任务原创 2024-02-11 12:13:39 · 2051 阅读 · 1 评论 -
2.1.3 毫米波雷达
毫米波雷达的体积小,相比于激光有更强的穿透性,能够轻松地穿透保险杠上的塑料,因此常被安装在汽车的保险杠内,安装之后对汽车外观的影响不大;毫米波雷达也有局限性,雨、雾和湿雪等高潮湿环境的衰减,以及大功率器件和插损的影响降低了毫米波雷达的探测距离,特别是垂直角度;毫米波的波长介于微波和厘米波之间,因此毫米波雷达兼有微波雷达和光电雷达的一些优点。毫米波雷达的原理是通过发射电磁波,然后接收反射回来的信号,通过电磁波返回的时间差计算目标的相对距离,通过多普勒效应产生的频率偏移来计算目标的相对速度。原创 2024-02-11 14:23:35 · 822 阅读 · 1 评论 -
2.1.2 激光雷达
激光雷达是自动驾驶领域非常依赖的传感器,越来越多的自动驾驶公司看好激光雷达的应用前景。激光雷达是实现更高级别自动驾驶(L3级别以上),以及更高安全性的良好途径,相比于毫米波雷达,激光雷达的分辨率更高、稳定性更好、三维数据也更可靠原创 2024-02-11 12:17:35 · 1003 阅读 · 1 评论 -
1.10 强化学习
强化学习又称增强学习,是指一类从与环境交互中不断学习的问题以及解决这类问题的方法原创 2024-02-10 17:42:35 · 931 阅读 · 1 评论 -
1.9 神经网络结构搜索(NAS)
神经网络架构搜索(NAS)是一种自动搜索最优神经网络架构的方法。通过使用NAS,研究人员可以避免手动设计网络架构的繁琐过程,从而节省时间和精力原创 2024-02-10 08:49:13 · 747 阅读 · 1 评论 -
1.8 NLP自然语言处理
NLP是自然语言处理(Natural Language Processing)的英文缩写,它是指用计算机对自然语言的形、音、义等信息进行处理,即对字、词、句、篇章的输入、输出、识别、分析、理解、生成等的操作和加工原创 2024-02-09 19:13:23 · 994 阅读 · 1 评论 -
1.7 Transformer
Transformer由编码器和解码器结构组成,编码器由自注意模块和前馈网络组成;解码器则与编码器类似,但在自注意模块和前馈网络中间由插入了一层编解码器注意力模块。更多请查看详情...原创 2024-02-09 15:00:35 · 1934 阅读 · 1 评论 -
1.6.2 nuScenes
nuScenes数据集使用了两辆传感器配置相同的雷诺电动车进行采集,采集地点为波士顿和新加坡,这两个城市以交通密集和驾驶场景复杂闻名。整个数据集包含了由人工挑选的84段log,时长约15小时,距离约242km,平均车速16km/h。数据场景覆盖了城市、住宅区、郊区、工业区各个场景,也涵盖了白天、黑夜、晴天、雨天、多云等不同时段不同天气状况。最终数据集分为1000个片段,每个片段约20s。原创 2024-02-09 14:05:08 · 875 阅读 · 1 评论 -
1.6.1 Argoverse
Argoverse是一个大规模的自动驾驶数据集,由Argo AI公司发布。它包含了多个城市和天气条件下的驾驶数据,包括激光雷达、相机、GPS、IMU等多种传感器数据原创 2024-02-09 12:22:51 · 1031 阅读 · 1 评论 -
1.5.1 NeRF
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis原创 2024-02-09 10:25:39 · 1076 阅读 · 1 评论 -
1.1.1 坐标系
在自动驾驶和机器人的多传感器融合定位算法中,想要获得鲁棒的、连续的、精确的全局定位结果,通常会充分利用各个传感器和模型,比如 GNSS/IMU/轮速编码器/载体模型/camera/LiDAR/高精地图,这其中会涉及到两大类坐标系,一个是常见的全局坐标系,另一个是局部坐标系原创 2024-02-08 19:34:30 · 911 阅读 · 0 评论 -
1.4.2 逆透视变换IPM
透视效应的存在,本来平行的事物,在图像中确实相交的。而IPM变换就是消除这种透视效应,所以也叫逆透视。原创 2024-02-09 08:32:22 · 1738 阅读 · 1 评论 -
1.3.1 卡尔曼滤波-KalmanFilter
卡尔曼滤波就可以对系统下一步要做什么做出有根据的推测。即便有噪声信息干扰,卡尔曼滤波通常也能很好的弄清楚究竟发生了什么,找出现象间不易察觉的相关性。因此卡尔曼滤波非常适合不断变化的系统,它的优点还有内存占用较小(只需保留前一个状态)、速度快,是实时问题和嵌入式系统的理想选择原创 2024-02-08 20:54:19 · 972 阅读 · 0 评论 -
1.2.1 相机模型—内参、外参
针孔相机模型,包含四个坐标系:物理成像坐标系、像素坐标系、相机坐标系、世界坐标系。相机参数包含:内参、外参、畸变参数。原创 2024-02-08 20:15:29 · 2433 阅读 · 0 评论 -
1.4.1 图像变换介绍
刚体变换、欧式变换、相似变换、仿射变换、透视变换原创 2024-02-08 21:30:58 · 1137 阅读 · 0 评论 -
全网最全自动驾驶文档,建议收藏
全网最全自动驾驶文档,建议收藏原创 2023-11-18 23:31:00 · 51 阅读 · 0 评论