机器学习十大算法!入门看这个就够了~

本文介绍了机器学习的基础算法,包括监督学习的线性回归、支持向量机、最近邻算法、逻辑回归和决策树,无监督学习的k-平均算法,以及强化学习的概念。此外,还提到了随机森林、朴素贝叶斯、降维算法和梯度增强算法。内容涵盖了各种算法的工作原理和应用场景。
摘要由CSDN通过智能技术生成

基本的机器学习算法:

  • 线性回归算法 Linear Regression
  • 支持向量机算法 (Support Vector Machine,SVM)
  • 最近邻居/k-近邻算法 (K-Nearest Neighbors,KNN)
  • 逻辑回归算法 Logistic Regression
  • 决策树算法 Decision Tree
  • k-平均算法 K-Means
  • 随机森林算法 Random Forest
  • 朴素贝叶斯算法 Naive Bayes
  • 降维算法 Dimensional Reduction
  • 梯度增强算法 Gradient Boosting

一、机器学习算法大致可以分为三类:

1、监督学习算法 (Supervised Algorithms)

       在监督学习训练过程中,可以由训练数据集学到或建立一个模式(函数 / learning model),并依此模式推测新的实例。该算法要求特定的输入/输出,首先需要决定使用哪种数据作为范例。例如,文字识别应用中一个手写的字符,或一行手写文字。主要算法包括神经网络、支持向量机、最近邻居法、朴素贝叶斯法、决策树等。

2、无监督学习算法 (Unsupervised Algorithms)

       这类算法没有特定的目标输出,算法将数据集分为不同的组。

3、强化学习算法 (Reinforcement Algorithms)

       强化学习普适性强,主要基于决策进行训练,算法根据输出结果(决策)的成功或错误来训练自己,通过大量经验训练优化后的算法将能够给出较好的预测。类似有机体在环境给予的奖励或惩罚的刺激下,逐步形成对刺激的预期,产生能获得最大利益的习惯性行为。在运筹学和控制论的语境下,强化学习被称作“近似动态规划”(approximate dynamic programming,ADP)。

二、基本的机器学习算法:

1. 线性回归算法 Linear Regression

       回归分析(Regression Analysis)是统计学的数据分析方法,目的在于了解两个或多个变量间是否相关、相关方向与强度,并建立数学模型以便观察特定变量来预测其它变量的变化情况。

        线性回归算法(Linear Regression)的建模过程就是使用数据点来寻找最佳拟合线。公式,y = mx + c,其中 y 是因变量,x 是自变量,利用给定的数据集求 m 和 c 的值。
线性回归又分为两种类型,即
 简单线性回归(simple linear regression),只有 1 个自变量;*多变量回归(multiple regression),至少两组以上自变量。

经典算法 机器学习中,决策树是一个预测模型;他代表的对象属性与值之间种映射关系。 机器学习中,决策树是一个预测模型;他代表的对象属性与值之间种映射关系。 机器学习中,决策树是一个预测模型;他代表的对象属性与值之间种映射关系。 机器学习中,决策树是一个预测模型;他代表的对象属性与值之间种映射关系。 机器学习中,决策树是一个预测模型;他代表的对象属性与值之间种映射关系。 机器学习中,决策树是一个预测模型;他代表的对象属性与值之间种映射关系。 机器学习中,决策树是一个预测模型;他代表的对象属性与值之间种映射关系。 机器学习中,决策树是一个预测模型;他代表的对象属性与值之间种映射关系。 机器学习中,决策树是一个预测模型;他代表的对象属性与值之间种映射关系。 机器学习中,决策树是一个预测模型;他代表的对象属性与值之间种映射关系。 机器学习中,决策树是一个预测模型;他代表的对象属性与值之间种映射关系。 机器学习中,决策树是一个预测模型;他代表的对象属性与值之间种映射关系。 机器学习中,决策树是一个预测模型;他代表的对象属性与值之间种映射关系。 机器学习中,决策树是一个预测模型;他代表的对象属性与值之间种映射关系。 机器学习中,决策树是一个预测模型;他代表的对象属性与值之间种映射关系。 机器学习中,决策树是一个预测模型;他代表的对象属性与值之间种映射关系。 机器学习中,决策树是一个预测模型;他代表的对象属性与值之间种映射关系。 机器学习中,决策树是一个预测模型;他代表的对象属性与值之间种映射关系。 机器学习中,决策树是一个预测模型;他代表的对象属性与值之间种映射关系。 树中每个节点表示某对象,而分叉路径则 代的可能属性值叶结树中每个节点表示某对象,而分叉路径则 代的可能属性值叶结树中每个节点表示某对象,而分叉路径则 代的可能属性值叶结树中每个节点表示某对象,而分叉路径则 代的可能属性值叶结树中每个节点表示某对象,而分叉路径则 代的可能属性值叶结树中每个节点表示某对象,而分叉路径则 代的可能属性值叶结树中每个节点表示某对象,而分叉路径则 代的可能属性值叶结树中每个节点表示某对象,而分叉路径则 代的可能属性值叶结树中每个节点表示某对象,而分叉路径则 代的可能属性值叶结树中每个节点表示某对象,而分叉路径则 代的可能属性值叶结树中每个节点表示某对象,而分叉路径则 代的可能属性值叶结树中每个节点表示某对象,而分叉路径则 代的可能属性值叶结树中每个节点表示某对象,而分叉路径则 代的可能属性值叶结树中每个节点表示某对象,而分叉路径则 代的可能属性值叶结树中每个节点表示某对象,而分叉路径则 代的可能属性值叶结树中每个节点表示某对象,而分叉路径则 代的可能属性值叶结树中每个节点表示某对象,而分叉路径则 代的可能属性值叶结树中每个节点表示某对象,而分叉路径则 代的可能属性值叶结树中每个节点表示某对象,而分叉路径则 代的可能属性值叶结对应从根节点到该叶所经历的路径表示象值。决策树仅有单一输出,若欲复 对应从根节点到该叶所经历的路径表示象值。决策树仅有单一输出,若欲复 对应从根节点到该叶所经历的路径表示象值。决策树仅有单一输出,若欲复 对应从根节点到该叶所经历的路径表示象值。决策树仅有单一输出,若欲复 对应从根节点到该叶所经历的路径表示象值。决策树仅有单一输出,若欲复 对应从根节点到该叶所经历的路径表示象值。决策树仅有单一输出,若欲复 对应从根节点到该叶所经历的路径表示象值。决策树仅有单一输出,若欲复 对应从根节点到该叶所经历的路径表示象值。决策树仅有单一输出,若欲复 对应从根节点到该叶所经历的路径表示象值。决策树仅有单一输出,若欲复 对应从根节点到该叶所经历的路径表示象值。决策树仅有单一输出,若欲复 对应从根节点到该叶所经历的路径表示象值。决策树仅有单一输出,若欲复 对应从根节点到该叶所经历的路径表示象值。决策树仅有单一输出,若欲复 对应从根节点到该叶所经历的路径表示象值。决策树仅有单一输出,若欲复 对应从根节点到该叶所经历的路径表示象值。决策树仅有单一输出,若欲复 对应从根节点到该叶所经历的路径表示象值。决策树仅有单一输出,若欲复 对应从根节点到该叶所经历的路径表示象值。决策树仅有单一输出,若欲复 对应从根节点到该叶所经历的路径表示象值。决策树仅有单一输出,若欲复 对应从根节点到该叶所经历的路径表示象值。决策树仅有单一输出,若欲复 对应从根节点到该叶所经历的路径表示象值。决策树仅有单一输出,若欲复 数输出,可以建立独的决策树处理不同。 数输出,可以建立独的决策树处理不同。 数输出,可以建立独的决策树处理不同。 数输出,可以建立独的决策树处理不同。 数输出,可以建立独的决策树处理不同。 数输出,可以建立独的决策树处理不同。 数输出,可以建立独的决策树处理不同。 数输出,可以建立独的决策树处理不同。 数输出,可以建立独的决策树处理不同。 数输出,可以建立独的决策树处理不同。 从数据产生决策树机器学习 技术叫做从数据产生决策树机器学习 技术叫做从数据产生决策树机器学习 技术叫做从数据产生决策树机器学习 技术叫做从数据产生决策树机器学习 技术叫做从数据产生决策树机器学习 技术叫做从数据产生决策树机器学习 技术叫做从数据产生决策树机器学习 技术叫做从数据产生决策树机器学习 技术叫做从数据产生决策树机器学习 技术叫做, 通俗说就是决策树。 通俗说就是决策树。 通俗说就是决策树。 通俗说就是决策树
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值