【python】tensorflow常用方法

本文详细介绍了TensorFlow中常用的变量初始化方法、卷积操作、多线程管理等基础功能,并探讨了占位符与feed_dict的使用技巧。此外,还对比了不同导入模块方式的区别,提供了模型保存的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、初始化变量

tf.get_variable(name,  shape, initializer):

name:变量名称

shape:变量的维度

initializer:变量初始化的方式

初始化的方式有以下几种:

tf.constant_initializer:常量初始化函数

tf.random_normal_initializer:正态分布

tf.truncated_normal_initializer:截取的正态分布(参考链接

tf.random_uniform_initializer:均匀分布

tf.zeros_initializer:全部是0

tf.ones_initializer:全是1

tf.Variable():每次使用创建,reuse属性对其不起作用,tf.get_variable,如果使用的对象已经创建,则把该对象返回,如果没有创建,则创建一个新的对象。

2、卷积操作

tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)

先卷积再相加

tf.nn.depthwise_conv2d(input, filter, strides, padding, name=None)

只卷积不相加

参考地址

3、多线程操作

关于tensorflow 的数据读取线程管理QueueRunner

4、占位符和feed_dict

tf.pleceholder()没有初始值,只有在空间中的内存。在会话中,占位符可以使用 feed_dict 馈送数据。

5、tf.unravel_index(indices, dims,order='C')

indices:将一个矩阵flatten后所需要取出的index

dims:原矩阵的形状shape

order:选择行在前还是列在前

>>> np.unravel_index([22, 41, 37], (7,6))
(array([3, 6, 6]), array([4, 5, 1]))
>>> np.unravel_index([31, 41, 13], (7,6), order='F')
(array([3, 6, 6]), array([4, 5, 1]))

>>> np.unravel_index(1621, (6,7,8,9))
(3, 1, 4, 1)

若indices有多个,则行信息为一个array,列信息为一个array……

6、import .. as ..和from .. import ...的区别

参考链接:http://blog.csdn.net/wenhao_ir/article/details/52327687

7、tensorflow保存图和权重

http://blog.csdn.net/wangxiaopeng0329/article/details/78636057

参考链接

8、argparse

点击打开链接

9、tf.split()
参考链接

9、tf.reduce_max(tensor,dim)

get the max value of dim


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值