某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
对每个测试用例,在1行里输出最少还需要建设的道路数目。
其实理解之后就是一个并查集问题,附上java代码,需要注意最后输出的时候,注意减一,cnt条不同道路,联通起来需要加cnt-1条边。
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
public class Main {
private static int[] f ;
public static void main(String[] args) throws IOException {
StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
while(in.nextToken()!=StreamTokenizer.TT_EOF){
int n = (int)in.nval;
if(n == 0) break;
in.nextToken();
int m = (int)in.nval;
f = new int[n+1];
for(int i = 1; i<=n; i++){
f[i] = i;//初始化
}
for(int i = 0; i<m; i++){
in.nextToken();
int x = (int)in.nval;
in.nextToken();
int y = (int)in.nval;
merge(x,y);//归并老大
}
int cnt = 0;
for(int i = 1; i<=n; i++){
if(f[i]==i) cnt++;//统计所剩不联通道路数
}
out.println(cnt-1);//注意减一,cnt条不同道路,联通起来需要加cnt-1条边
out.flush();
}
}
private static void merge(int x, int y) {
//找祖先
int fx = find(x);
int fy = find(y);
//不同则合并
if(fx != fy){
f[fy] = fx;
}
}
private static int find(int x) {
int r = x;
while(f[r]!=r){
r = f[r];
}
//路径压缩
int tem;
while(f[x]!=r){
tem = f[x];
f[x] = r;
x = tem;
}
return r;
}
}