CNN模型之MobileNet


引言

卷积神经网络(CNN)已经普遍应用在计算机视觉领域,并且已经取得了不错的效果。图1为近几年来CNNImageNet竞赛的表现,可以看到为了追求分类准确度,模型深度越来越深,模型复杂度也越来越高,如深度残差网络(ResNet)其层数已经多达152层。



图0 CNNImageNet上的表现(来源:CVPR2017

 

However,在某些真实的应用场景如移动或者嵌入式设备,如此大而复杂的模型是难以被应用的。


首先是模型过于庞大,面临着内存不足的问题,其次这些场景要求低延迟,或者说响应速度要快,想象一下自动驾驶汽车的行人检测系统如果速度很慢会发生什么可怕的事情。


所以,研究小而高效的CNN模型在这些场景至关重要,至少目前是这样,尽管未来硬件也会越来越快。


目前的研究总结来看分为两个方向:一是对训练好的复杂模型进行压缩得到小模型;二是直接设计小模型并进行训练。不管如何,其目标在保持模型性能(accuracy)的前提下降低模型大小(parameterssize),同时提升模型速度(speed, low latency)。


本文的主角MobileNet属于后者,其是Google最近提出的一种小巧而高效的CNN模型,其在accuracy和latency之间做了折中。


下面对MobileNet做详细的介绍。






Depthwise separable convolution:


MobileNet的基本单元是深度级可分离卷积(depthwise separable convolution---DSC),其实这种结构之前已经被使用在Inception模型中。


深度级可分离卷积其实是一种可分解卷积操作(factorized convolutions),其可以分解为两个更小的操作:

depthwise convolution和pointwise convolution


如图1所示: Depthwise convolution和标准卷积不同,对于标准卷积其卷积核是用在所有的输入通道上(input channels),而depthwise convolution针对每个输入通道采用不同的卷积核,就是说一个卷积核对应一个输入通道,所以说depthwise convolution是depth级别的操作。


而pointwise convolution其实就是普通的卷积,只不过其采用1x1的卷积核。图2中更清晰地展示了两种操作。


对于DSC,其首先是采用depthwise convolution对不同输入通道分别进行卷积,然后采用pointwise convolution将上面的输出再进行结合,这样其实整体效果和一个标准卷积是差不多的,但是会大大减少计算量和模型参数量。

1 Depthwise separable convolution


2 Depthwise convolutionpointwiseconvolution


这里简单分析一下depthwise separable convolution在计算量上与标准卷积的差别。

假定输入特征图大小是: D(F)*D(F)*M 

而输出特征图大小是:D(F)*D(F)*N

这是假定两者是相同的,M、N 指的是通道数(channels or depth)

这里也假定输入与输出特征图大小(width and height)是一致的

采用的卷积核大小:D(K)*D(K) 尽管是特例,但是不影响下面分析的一般性。

其中D(F)是特征图的width和height,(F下标,微信不能编辑公式,好气哦)


对于标准的卷积,其计算量将是:D(K)、D(K)、M、N、D(F)、D(F)

而对于depthwise convolution其计算量为: D(K)、D(K)、MD(F)、D(F)

对于 pointwise convolution计算量是:M、N、D(F)、D(F)


所以depthwise separable convolution总计算量是:

    D(K)、D(K)、MD(F)、D(F) + M、N、D(F)、D(F)

可以比较depthwise separable convolution和标准卷积如下:


一般情况下比较大,那么如果采用3x3卷积核的话,depthwise separable convolution相较标准卷积可以降低大约9倍的计算量。其实,后面会有对比,参数量也会减少很多。





MobileNet的一般结构


前面讲述了depthwise separable convolution,这是MobileNet的基本组件,但是在真正应用中会加入batchnorm,并使用ReLU激活函数,所以depthwise separable convolution的基本结构如图3所示。

3 加入BNReLUdepthwiseseparable convolution

1 MobileNet的网络结构

MobileNet的网络结构如表1所示。

首先是一个3x3的标准卷积,然后后面就是堆积depthwise separable convolution,并且可以看到其中的部分depthwise convolution会通过strides=2进行downsampling。


然后采用average pooling将feature变成1x1,根据预测类别大小加上全连接层,最后是一个softmax层。


如果单独计算depthwise convolution和pointwise convolution,整个网络有28层(这里Avg Pool和Softmax不计算在内)。


我们还可以分析整个网络的参数和计算量分布,如表2所示。可以看到整个计算量基本集中在1x1卷积上。


如果你熟悉卷积底层实现的话,你应该知道卷积一般通过一种im2col方式实现,其需要内存重组,但是当卷积核为1x1时,其实就不需要这种操作了,底层可以有更快的实现。对于参数也主要集中在1x1卷积,除此之外还有就是全连接层占了一部分参数。




2 MobileNet网络的计算与参数分布


3 MobileNetGoogleNetVGG16性能对比






MobileNet 瘦身:

前面说的MobileNet的基准模型,但是有时候你需要更小的模型,那么就要对MobileNet瘦身了。这里引入了两个超参数:width multiplier和resolution multiplier。第一个参数width multiplier主要是按比例减少通道数,该参数记为,其取值范围为(0,1],那么输入与输出通道数将变成 和,对于depthwiseseparable convolution,其计算量变为:

因为主要计算量在后一项,所以width multiplier可以按照 Alpha^2 比例降低计算量,其是参数量也会下降。

第二个参数resolution multiplier主要是按比例降低特征图的大小,记为 Rho,比如原来输入特征图是224*224,可以减少为192*192,加上resolution multiplier,depthwiseseparable convolution的计算量为:

要说明的是,resolution multiplier仅仅影响计算量,但是不改变参数量。

引入两个参数会给肯定会降低MobileNet的性能,具体实验分析可以见paper,总结来看是在accuracy和computation,以及accuracy和model size之间做折中。





MobileNet 的TensorFlow实现:

TensorFlow的nn库有depthwise convolution算子tf.nn.depthwise_conv2d,所以MobileNet很容易在TensorFlow上实现:

class MobileNet(object):
    def __init__(self, inputs, num_classes=1000, is_training=True,
                 width_multiplier=1, scope="MobileNet"):
        """
        The implement of MobileNet(ref:https://arxiv.org/abs/1704.04861)
        :param inputs: 4-D Tensor of [batch_size, height, width, channels]
        :param num_classes: number of classes
        :param is_training: Boolean, whether or not the model is training
        :param width_multiplier: float, controls the size of model
        :param scope: Optional scope for variables
        """
        self.inputs = inputs
        self.num_classes = num_classes
        self.is_training = is_training
        self.width_multiplier = width_multiplier

        # construct model
        with tf.variable_scope(scope):
            # conv1
            net = conv2d(inputs, "conv_1", round(32 * width_multiplier), filter_size=3,
                         strides=2)  # ->[N, 112, 112, 32]
            net = tf.nn.relu(bacthnorm(net, "conv_1/bn", is_training=self.is_training))
            net = self._depthwise_separable_conv2d(net, 64, self.width_multiplier,
                                "ds_conv_2") # ->[N, 112, 112, 64]
            net = self._depthwise_separable_conv2d(net, 128, self.width_multiplier,
                                "ds_conv_3", downsample=True) # ->[N, 56, 56, 128]
            net = self._depthwise_separable_conv2d(net, 128, self.width_multiplier,
                                "ds_conv_4") # ->[N, 56, 56, 128]
            net = self._depthwise_separable_conv2d(net, 256, self.width_multiplier,
                                "ds_conv_5", downsample=True) # ->[N, 28, 28, 256]
            net = self._depthwise_separable_conv2d(net, 256, self.width_multiplier,
                                "ds_conv_6") # ->[N, 28, 28, 256]
            net = self._depthwise_separable_conv2d(net, 512, self.width_multiplier,
                                "ds_conv_7", downsample=True) # ->[N, 14, 14, 512]
            net = self._depthwise_separable_conv2d(net, 512, self.width_multiplier,
                                "ds_conv_8") # ->[N, 14, 14, 512]
            net = self._depthwise_separable_conv2d(net, 512, self.width_multiplier,
                                "ds_conv_9")  # ->[N, 14, 14, 512]
            net = self._depthwise_separable_conv2d(net, 512, self.width_multiplier,
                                "ds_conv_10")  # ->[N, 14, 14, 512]
            net = self._depthwise_separable_conv2d(net, 512, self.width_multiplier,
                                "ds_conv_11")  # ->[N, 14, 14, 512]
            net = self._depthwise_separable_conv2d(net, 512, self.width_multiplier,
                                "ds_conv_12")  # ->[N, 14, 14, 512]
            net = self._depthwise_separable_conv2d(net, 1024, self.width_multiplier,
                                "ds_conv_13", downsample=True) # ->[N, 7, 7, 1024]
            net = self._depthwise_separable_conv2d(net, 1024, self.width_multiplier,
                                "ds_conv_14") # ->[N, 7, 7, 1024]
            net = avg_pool(net, 7, "avg_pool_15")
            net = tf.squeeze(net, [1, 2], name="SpatialSqueeze")
            self.logits = fc(net, self.num_classes, "fc_16")
            self.predictions = tf.nn.softmax(self.logits)

    def _depthwise_separable_conv2d(self, inputs, num_filters, width_multiplier,
                                    scope, downsample=False):
        """depthwise separable convolution 2D function"""
        num_filters = round(num_filters * width_multiplier)
        strides = 2 if downsample else 1

        with tf.variable_scope(scope):
            # depthwise conv2d
            dw_conv = depthwise_conv2d(inputs, "depthwise_conv", strides=strides)
            # batchnorm
            bn = bacthnorm(dw_conv, "dw_bn", is_training=self.is_training)
            # relu
            relu = tf.nn.relu(bn)
            # pointwise conv2d (1x1)
            pw_conv = conv2d(relu, "pointwise_conv", num_filters)
            # bn
            bn = bacthnorm(pw_conv, "pw_bn", is_training=self.is_training)
            return tf.nn.relu(bn)



完整实现可以参见GitHub(https://github.com/xiaohu2015/DeepLearning_tutorials/)


总结  


本文简单介绍了Google提出的移动端模型MobileNet,其核心是采用了可分解的depthwise separable convolution,其不仅可以降低模型计算复杂度,而且可以大大降低模型大小。在真实的移动端应用场景,像MobileNet这样类似的网络将是持续研究的重点。后面我们会介绍其他的移动端CNN模型


参考资料

1. MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Applications: https://arxiv.org/abs/1704.04861.

### 回答1: 使用TensorFlow来训练MobileNet模型,可以使用Keras API或者TensorFlow的低级API,但需要指定网络的结构。相比CNN模型MobileNet模型有以下优点:1. 具有更小的模型参数,可以更快地训练和部署;2. 可以在不同移动设备和计算机平台上运行;3. 具有较低的计算复杂度,可以提高深度学习模型的推理速度。但是,MobileNet模型的精确度可能会低于CNN模型。 ### 回答2: TensorFlow 是一个强大的开源机器学习框架,可以用于训练和部署深度学习模型。下面是使用 TensorFlow 训练 MobileNet 模型的步骤: 1. 准备数据集:首先,需要准备用于训练的数据集。数据集应包含不同类别的图像,并进行分割,一部分用于训练,一部分用于验证。 2. 定义模型:在 TensorFlow 中,可以使用 tf.keras 库来定义模型MobileNet 是一种轻量级卷积神经网络模型,可以用于图像分类任务。使用 TensorFlow 的 API,可以轻松地定义和构建 MobileNet 模型。 3. 编译模型:在编译模型之前,需要选择适当的损失函数和优化器。对于图像分类任务,常用的损失函数是交叉熵损失函数,优化器可以选择 Adam 或 RMSProp。 4. 训练模型:使用准备好的数据集来训练模型。可以通过调整批处理大小、迭代次数和学习率等超参数来优化模型的训练效果。训练过程中,可以使用 TensorFlow 的自动微分功能来计算梯度并更新模型参数。 5. 评估模型:在训练过程中,可以使用验证集来评估模型在未见过的数据上的性能。通常使用准确率来评估模型的分类性能。 MobileNet 模型与传统的卷积神经网络 (CNN) 模型相比,具有以下优点和缺点: 优点: 1. 轻量级:MobileNet 模型是一种轻量级模型,具有较少的参数和计算负载,适合移动设备或资源受限的环境中使用。 2. 高效:MobileNet 使用了深度可分离卷积 (Depthwise Separable Convolution) 技术,将卷积操作分解为两个步骤,从而减少了计算量。 3. 准确性高:尽管 MobileNet 是一种轻量级模型,但在图像分类任务中仍能取得较高的准确率。 缺点: 1. 相对于一些更复杂的卷积神经网络模型,如 ResNet 或 Inception,MobileNet 的准确率可能稍低。 2. 由于模型轻量化的特性,MobileNet 对于一些具有细致纹理或结构复杂的图像可能并不适合,这些图像可能需要更复杂的网络结构来进行分类。 综上所述,MobileNet 模型是一种轻量级、高效且准确的卷积神经网络模型,适用于资源受限的环境中进行图像分类任务。 ### 回答3: 要使用TensorFlow训练MobileNet模型,首先需要确保已经安装了TensorFlow库。接下来,可以按照以下步骤进行训练: 1. 准备数据集:首先需要准备用于训练的数据集。可以使用已经标注好的图像数据集,保证训练数据集包含预期的分类标签。 2. 构建模型:使用TensorFlow构建MobileNet模型MobileNet是一种轻量级的卷积神经网络模型,适用于移动设备和嵌入式系统等资源受限环境。 3. 配置训练参数:设置训练的超参数,例如学习率、批次大小和训练步数等。这些参数的设置会对模型的训练效果产生影响。 4. 训练模型:通过对准备好的训练数据集进行迭代训练,不断调整模型参数以优化预测效果。 5. 评估和调优:使用测试数据集对训练好的模型进行评估,计算模型的准确率、召回率等指标,进一步调整模型参数以获得更好的性能。 MobileNet与传统的CNN模型相比具有以下优点和缺点: 优点: 1. 轻量级:MobileNet模型相较于传统的CNN模型模型尺寸更小,占用更少的存储和计算资源,适用于移动设备等资源受限的场景。 2. 高效率:MobileNet模型在保持较高准确率的同时,有更快的推理速度,能够更快地对输入进行预测。 3. 可扩展性:MobileNet模型易于扩展和迁移,可以根据具体需求对网络结构进行修改和调整,适应不同的应用场景。 缺点: 1. 准确性相对低:相较于某些更复杂的CNN模型MobileNet模型可能在某些特定任务上的准确率相对较低,对于一些要求更高准确率的场景可能不够适用。 2. 轻量化特点的局限性:由于MobileNet模型的轻量化特点,模型的参数数量较少,可能导致其在一些复杂任务上的表现不如传统的CNN模型。 总体而言,MobileNet模型适用于资源受限环境下对模型大小和推理速度要求较高的场景,但在准确性上可能相对较低。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值