转自http://blogger.org.cn/blog/more.asp?name=idmer&id=15785
ohmyfuture,
最近一直很忙,抱歉回信晚了。
关于数据挖掘方面的研究,我原来也走过一些弯路。其实从数据挖掘的 起源可以发现,它并不是一门崭新的科学,而是综合了统计分析 、机器学习、人工智能、数据库等诸多方面的研究成果而成 ,同时与专家系统、知识管理等研究方向不同的是,数据挖掘更侧重于 应用的层面。
因此来说,数据挖掘融合了相当多的内容,试图全面了解所有的细节会 花费很长的时间。因此我建议你的第一步是用大概三个月的时间了解数 据挖掘的几个常用技术:分类、聚类、预测、关联分析 、孤立点分析等等。这种了解是比较粗的,目标是明白这些技术是用来 干什么的,典型的算法大致是怎样的,以及在什么情况下应该选用什么 样的技术和算法。
经过初步了解之后,就要进入选题的阶段,选择自己感兴趣的某个具体 方向,然后通读该方向的经典论文(综述、主要发展方向、应用成果 )。选题阶段可能会花费较长的时间,比如一年。此时 ,要逐渐明确突破点,也就是将来你论文的创新点。创新对于研究来说 非常重要,一方面该创新的确比原来的方法要好,另一方面该创新的确 具有实用的价值。
随后,就要来实现自己的想法。通常对于硕士论文来说 ,需要建立原型系统,进行试验,并用试验结果来支持自己的论文主题 。原型系统就是对自己创新点的实现,需要很好地设计和开发 。需要注意的是,原型系统的建立和开发商用系统不同 ,需要体现比较好的理论基础。也就是说,原型系统并不是简单地用于 实现功能,而是将你的一整套理论付诸实现。这种理论基础也将会包含 在你的论文中,以体现论文的理论高度。
原型系统的搭建以及产生令人信服试验结果,这个过程一般需要至少一 年的时间。所以要集中精力于核心部分(体现论文创新点的部分) ,外围的界面等等不应投入太多的精力,以免进度失控。
最后是论文的整理和写作了。建议你在之前的阶段中逐步先写出一些篇 幅较短的论文(用于发在期刊、会议上),比如综述、体系框架 、算法内核、应用等等。这样在最后写毕业论文时就有了足够多的内容 ,会写得更好更快一些。
以上只是泛泛而谈。其实我觉得其中的关键点在于选题 ,而选题的好坏取决于你对数据挖掘研究现状的了解 、你的兴趣和专长、以及该方向在应用上的意义。建议你和导师 、同行多交流,能够让自己的方向更清晰。
至于数据挖掘领域的就业,应该来说还是前景不错的 。如果你对研究有兴趣,象微软研究院、Google 、高校研究所都是不错的地方;如果你对实际应用有兴趣 ,很多大的公司包括IBM、Accenture、亚信等等都有相应 的人力需求,当然一些甲方的单位比如证券、保险、金融等等单位也都 需要分析人才。
Best Regards,
Sunstone Zhang