矩阵的迹(凑字)

矩阵的迹

重要性质的总结:

(1)\operatorname{tr}(\mathrm{AB})=\operatorname{tr}(\mathrm{BA})

(2) \operatorname{tr}(\mathrm{A^T})=\operatorname{tr}(\mathrm{A})

(3)结合性质(1)和(2),可以得到:

\operatorname{tr}(\mathrm{AB^T})=\operatorname{tr}(\mathrm{BA^T})=\operatorname{tr}(\mathrm{A^TB})=\operatorname{tr}(\mathrm{B^TA})

(4)当AB退化为向量时,有\operatorname{tr}(\mathrm{ab^T})=\operatorname{tr}(\mathrm{b^Ta})=\mathrm{b^Ta}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值