机器学习与深度学习5:pytorch前馈神经网络FNN实现手写数字识别

一、数据集:

        使用内置MINST函数处理数据。代码会自动下载数据。代码见dataset.py

二、代码部分:

网络结构:

        网络结构为三层神经网络,第一层为输入层,第二层为隐藏层,第三层为输出层,输入层大小为784,隐藏层为256,输出层大小为10。

        前向传播方法:view函数将x展平为一维向量,在实际训练中,输入的x为28*28的灰度图像。通过view函数展平后,得到784个值,将此数据输入第一个线性层,输出256个值再使用ReLu函数激活256个值再更新给x,再通过输出层输出10个值。其中最大的值的索引就为网络预测的值。

训练过程:

训练过程包括5个步骤:计算神经网络结果,计算损失,计算梯度,根据梯度更新参数,清零梯度

dataset.py

import torchvision
from torch.utils.data import DataLoader
from torchvision import transforms

transform = transforms.Compose([
    transforms.ToTensor()  # 转换为张量
])
def getDataloder():
    train_dataset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
    print("train_dataset length: ", len(train_dataset))
    # 小批量的数据读入
    train_loader = DataLoader(train_dataset, batch_size=512, shuffle=True, num_workers=8)
    print("train_loader length: ", len(train_loader))
    return train_loader
def getTestloder():
    test_dataset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
    print("train_dataset length: ", len(test_dataset))
    # 小批量的数据读入
    test_loader = DataLoader(test_dataset, batch_size=1, shuffle=True)
    print("train_loader length: ", len(test_loader))
    return test_loader
if __name__ == '__main__':
    getDataloder()

 model.py

import torch
from torch import nn
#from torch import Module
# 定义神经网络Network
class Network(nn.Module):
    def __init__(self):
        super().__init__()
        # 线性层1,输入层和隐藏层之间的线性层
        self.layer1 = nn.Linear(784, 256)
        # 线性层2,隐藏层和输出层之间的线性层
        self.layer2 = nn.Linear(256, 10)

    # 在前向传播,forward函数中,输入为图像x
    def forward(self, x):
        x = x.view(-1, 28 * 28) # 使用view函数,将x展平
        x = self.layer1(x)  # 将x输入至layer1
        #x = torch.sigmoid(x)  # 使用relu激活
        x = torch.relu(x)
        return self.layer2(x) # 输入至layer2计算结果

train.py

import torch
from torch import nn
from torch import optim
from model import Network
#from dataset import getDataloder
from dataset_csdn import getDataloder
if __name__ == '__main__':
    # 小批量的数据读入
    train_loader = getDataloder()
    print("train_loader length: ", len(train_loader))
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = Network().to(device)  # 模型本身,它就是我们设计的神经网络
    optimizer = optim.Adam(model.parameters())  # 优化模型中的参数
    #criterion = nn.BCEWithLogitsLoss()
    criterion = nn.CrossEntropyLoss()  # 分类问题,使用交叉熵损失误差

    # 进入模型的迭代循环
    for epoch in range(10):  # 外层循环,代表了整个训练数据集的遍历次数
        # 整个训练集要循环多少轮,是10次、20次或者100次都是可能的,

        # 内存循环使用train_loader,进行小批量的数据读取
        for batch_idx, (data, label) in enumerate(train_loader):
            data = data.to(device)
            label = label.to(device)
            # 内层每循环一次,就会进行一次梯度下降算法
            # 包括了5个步骤:
            output = model(data) # 1.计算神经网络的前向传播结果
            loss = criterion(output, label) # 2.计算output和标签label之间的损失loss
            loss.backward()  # 3.使用backward计算梯度
            optimizer.step()  # 4.使用optimizer.step更新参数
            optimizer.zero_grad()  # 5.将梯度清零
            # 这5个步骤,是使用pytorch框架训练模型的定式,初学的时候,先记住就可以了

            # 每迭代100个小批量,就打印一次模型的损失,观察训练的过程
            if batch_idx % 100 == 0:
                print(f"Epoch {epoch + 1}/10 "
                      f"| Batch {batch_idx}/{len(train_loader)} "
                      f"| Loss: {loss.item():.4f}")

    torch.save(model.state_dict(), 'mnist_new.pth') # 保存模型

test.py

import torch
from dataset import getTestloder
from model import Network

if __name__ == '__main__':
    testDataloader = getTestloder()
    model = Network()
    model.load_state_dict(torch.load('./mnist_new.pth'))
    true_count = 0
    false_count = 0
    for idx,(image,label) in enumerate(testDataloader):
        predict = model(image).argmax(1).item()
        #print(predict)
        if predict == label:
            true_count += 1
        else:false_count += 1
    Accuracy = true_count/(true_count+false_count)
    print(Accuracy)
        #if(predict == label):

三、项目下载

项目下载地址: 点击下载

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值