机器学习模型的评估指标

85 篇文章 5 订阅
58 篇文章 2 订阅

机器学习的参数调整是为了更好的模型拟合度,那么其评估标准是什么,如何调整参数来提升模型的整体效果呢?
调参的方式总是根据数据的状况而定,所以没有办法一概而论。
通过画学习曲线,或者网格搜索,能够探索到调参边缘(代价可能是训练一次模型要跑三天三夜),“业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已”。但是在现实中,高手调参恐怕还是多依赖于经验,而这些经验,来源于:
1)正确的调参思路和方法,
2)对模型评估指标的理解,
3)对数据的感觉和经验,
4)用洪荒之力去不断地尝试。
对模型评估指标的理解和调参的思路。

调参思路

模型调参,第一步是要找准目标:我们要做什么?一般来说,这个目标是提升某个模型评估指标,比如对于随机森林来说,我们想要提升的是模型在未知数据上的准确率(由score或oob_score_来衡量)。找准了这个目标,就要思考:模型在未知数据上的准确率受什么因素影响?在机器学习中,用来衡量模型在未知数据上的准确率的指标,叫做泛化误差(Genelization error)

泛化误差

当模型在未知数据(测试集或者袋外数据)上表现糟糕时,我们说模型的泛化程度不够,泛化误差大,模型的效果不好。泛化误差受到模型的结构(复杂度)影响。看下面这张图,它准确地描绘了泛化误差与模型复杂度的关系,当模型太复杂,模型就会过拟合,泛化能力就不够,所以泛化误差大。当模型太简单,模型就会欠拟合,拟合能力就不够,所以误差也会大。只有当模型的复杂度刚刚好的才能够达到泛化误差最小的目标。
在这里插入图片描述
那模型的复杂度与参数有什么关系呢?对树模型来说,树越茂盛,深度越深,枝叶越多,模型就越复杂。所以树模型是天生位于图的右上角的模型,随机森林是以树模型为基础,所以随机森林也是天生复杂度高的模型。随机森林的参数,都是向着一个目标去:减少模型的复杂度,把模型往图像的左
边移动,防止过拟合。当然了,调参没有绝对,也有天生处于图像左边的随机森林,所以调参之前,要先判断,模型现在究竟处于图像的哪一边。
泛化误差的背后其实是“偏差-方差困境”,只需要记住这四点:
1)模型太复杂或者太简单,都会让泛化误差高,我们追求的是位于中间的平衡点;
2)模型太复杂就会过拟合,模型太简单就会欠拟合;
3)对树模型和树的集成模型来说,树的深度越深,枝叶越多,模型越复杂;
4)树模型和树的集成模型的目标,都是减少模型复杂度,把模型往图像的左边移动。
具体到每个参数,如何影响复杂度和模型?调参,都是在学习曲线上轮流找
最优值,盼望能够将准确率修正到一个比较高的水平。然而,现在了解了随机森林的调参方向:降低复杂度,就可以将那些对复杂度影响巨大的参数挑选出来,研究他们的单调性,然后专注调整那些能最大限度让复杂度降低的参数。对于那些不单调的参数,或者反而会让复杂度升高的参数,视情况使用,大多时候甚至可以退避。基于经验,对各个参数对模型的影响程度做一个排序。调参时,可以参考这个顺序。
n_estimators :提升至平稳,n_estimators↑,不影响单个模型的复杂度 ⭐⭐⭐⭐
max_depth :有增有减,默认最大深度,即最高复杂度,向复杂度降低的方向调参max_depth↓,模型更简单,且向图像的左边移动 ⭐⭐⭐
min_samples_leaf :有增有减,默认最小限制1,即最高复杂度,向复杂度降低的方向调参min_samples_leaf↑,模型更简单,且向图像的左边移动 ⭐⭐
min_samples_split :有增有减,默认最小限制2,即最高复杂度,向复杂度降低的方向调参min_samples_split↑,模型更简单,且向图像的左边移动 ⭐⭐
max_features :有增有减,默认auto,是特征总数的开平方,位于中间复杂度,既可以向复杂度升高的方向,也可以向复杂度降低的方向调参 max_features↓,模型更简单,图像左移 max_features↑,模型更复杂,图像右移 max_features是唯一的,既能够让模型更简单,也能够让模型更复杂的参数,所以在调整这个参数的时候,需要考虑我们调参的方向 ⭐
criterion :有增有减,一般使用gini,影响程度看具体情况
通过参数的变化来了解,模型什么时候到达了极限,当复杂度已经不能再降低的时候,就不必再调整了,因为调整大型数据的参数是一件非常费时费力的事。除了学习曲线和网格搜索,现在有了基于对模型和正确的调参思路的“推测”能力,这能够让调参能力更上一层楼。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
机器学习模型评估指标主要分为分类和回归两大类。在分类模型中,常用的评估指标包括混淆矩阵、准确率、错误率、精确率、召回率、F1 score、ROC曲线、AUC、PR曲线、对数损失和分类指标的文本报告。而在回归模型中,常用的评估指标包括平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)、归一化均方根误差(NRMSE)和决定系数(R2)。\[3\] 其中,ROC曲线是一种常用的评估分类模型性能的指标,它独立于responders比例的变化,可以帮助我们了解模型在不同阈值下的表现。\[1\]而MAE(平均绝对误差)是一种常用的评估回归模型性能的指标,它衡量了预测值与真实值之间的平均绝对差异。\[2\] 综上所述,机器学习模型评估指标根据不同的任务和模型类型选择不同的指标进行评估,以帮助我们了解模型的性能和效果。 #### 引用[.reference_title] - *1* [你知道这11个重要的机器学习模型评估指标吗?](https://blog.csdn.net/fendouaini/article/details/100013633)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [机器学习模型评估指标](https://blog.csdn.net/dfly_zx/article/details/123142984)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值