sklearn机器学习:随机森林分类器RandomForestClassifier

以下以随机森林为例讨论集成算法。

sklearn随机森林分类器

随机森林是非常具有代表性的Bagging集成算法,它的所有基评估器都是决策树,分类树组成的森林就叫做随机森林分类器,回归树所集成的森林就叫做随机森林回归器。我们先来看
RandomForestClassifier,随机森林分类器。
class sklearn.ensemble.RandomForestClassifier (n_estimators=’10’, criterion=’gini’, max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None)

重要参数

控制基评估器的参数

criterion 不纯度的衡量指标,有基尼系数和信息熵两种选择
max_depth 树的最大深度,超过最大深度的树枝都会被剪掉
min_samples_leaf
一个节点在分枝后的每个子节点都必须包含至少min_samples_leaf个训练样本,否则分枝就不会发生
min_samples_split
一个节点必须要包含至少min_samples_split个训练样本,这个节点才允许被分枝,否则分枝就不会发生
max_features
限制分枝时考虑的特征个数,超过限制个数的特征都会被舍弃,默认值为总特征个数开平方取整
min_impurity_decrease 限制信息增益的大小,信息增益小于设定值的分枝不会发生
这些参数在随机森林中的含义,和我们在上决策树时说明的内容一模一样,单个决策树的准确率越高,随机森林的准确率也会越高,因为装袋法是依赖于平均值或者少数服从多数原则来决定集成的结果的。

n_estimators

森林中树木的数量,即基评估器的数量。这个参数对随机森林模型的精确性影响是单调的,
n_estimators越大,模型的效果往往越好。但是相应的,任何模型都有决策边界,n_estimators达到一定的程度之后,随机森林的精确性往往不在上升或开始波动,并且,n_estimators越大,需要的计算
量和内存也越大,训练的时间也会越来越长。对于这个参数,我们是追求的是在训练难度和模型效果之间取得平衡。
n_estimators的默认值在现有版本的sklearn中是10,但是在即将更新的0.22版本中,这个默认值会被修正为100。这个修正显示出了使用者的调参倾向:要更大的n_estimators。

sklearn建立随机森林分类器

树模型的优点是简单易懂,可视化之后的树人人都能够看懂,可惜随机森林是无法被可视化的。为了更加直观地让大家体会随机森林的效果,来进行一个随机森林和单个决策树效益的对比。
依然使用红酒数据集。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
wine = load_wine()
wine
wine.data
wine.target
#切分训练集和测试集
Xtrain, Xtest, Ytrain, Ytest = train_test_split(wine.data,wine.target,test_size=0.3)
#建立模型
clf = DecisionTreeClassifier(random_state=0)
rfc = RandomForestClassifier(random_state=0)
clf = clf.fit(Xtrain,Ytrain)
rfc = rfc.fit(Xtrain,Ytrain)
#查看模型效果
score_c = clf.score(Xtest,Ytest)
score_r = rfc.score(Xtest,Ytest)
#打印最后结果
print("Single Tree:",score_c)
print("Random Forest:",score_r)
Single Tree: 0.8888888888888888
Random Forest: 0.9444444444444444
#画出随机森林和决策树在一组交叉验证下的效果对比
#交叉验证:是数据集划分为n分,依次取每一份做测试集,每n-1份做训练集,多次训练模型以观测模型稳定性的方法
from sklearn.model_selection import cross_val_score
rfc = RandomForestClassifier(n_estimators=25)
rfc_s = cross_val_score(rfc,wine.data,wine.target,cv=10)
clf = DecisionTreeClassifier()
clf_s = cross_val_score(clf,wine.data,wine.target,cv=10)
plt.plot(range(1,11),rfc_s,label = "RandomForest")
plt.plot(range(1,11),clf_s,label = "DecisionTree")
plt.legend()
plt.show()

在这里插入图片描述

#一种更加有趣也更简单的写法
label = "RandomForest"
for model in [RandomForestClassifier(n_estimators=25),DecisionTreeClassifier()]:
    score = cross_val_score(model,wine.data,wine.target,cv=
  • 15
    点赞
  • 134
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
随机森林是一种集成学习方法,它通过构建多个决策树来提高预测准确性。下面是sklearn随机森林的一些基本步骤、参数、属性和接口: 1. 基本步骤: 1.1 参数n_estimators:指定森林中树的数量。 1.2 建立森林:使用RandomForestClassifier()函数建立随机森林。 1.3 n_estimators的学习曲线:使用validation_curve()函数绘制n_estimators的学习曲线。 2. 重要的参数、属性、接口: 2.1 random_state:在划分训练集和测试集的类train_test_split、构建决策树的函数、构建随机森林时都可以使用该参数,它可以保证每次运行时得到的结果都是一样的。 2.2 estimators_:查看森林中每棵树的状况。 2.3 bootstrap & oob_score:bootstrap参数控制是否进行有放回的随机抽样,oob_score参数控制是否使用袋外样本来评估模型的准确性。 2.4 fit & score:fit()函数用于拟合模型,score()函数用于评估模型的准确性。 2.5 feature_importances_:查看每个特征的重要性。 2.6 apply:返回每个样本所在的叶子节点的索引。 2.7 predict:对新数据进行预测。 2.8 predict_proba:返回每个类别的概率。 3. 随机森林回归器: 3.1 重要的参数、属性、接口:与分类器类似,但是需要使用RandomForestRegressor()函数来建立随机森林回归器。 4. 机器学习中调参的基本思想: 泛化误差:模型在新数据上的误差。 标签和特征:标签是我们要预测的变量,特征是我们用来预测标签的变量。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值