40、密码学中的签名与代理重加密技术解析

密码学中的签名与代理重加密技术解析

1. 无 ROS 假设的一轮基于身份的盲签名方案

1.1 方案安全性证明

在模拟实验中,攻击者 A 的视图与真实实验中的视图不可区分,且只有当 A 成功时,算法 B 才会成功。因此,B 成功的概率 ϵ2 至少为 A 成功的概率 ϵ1。算法 B 的运行时间是 A 的运行时间加上响应各种查询(qH1 个 H1 - 哈希查询、qH2 个 H2 - 哈希查询、qE 个提取查询和 qS 个签名发行查询)所需的时间。每个查询在 G1 中最多需要四次指数运算,假设每次指数运算耗时 cG1。所以,总运行时间 t2 最多为 t1 + 4cG1(qH1 + qH2 + qS + qE),这完成了定理 1 的证明。

结合上述引理,得到定理 2:如果在群 G1 中“一次多 BDHI 假设”成立,那么所提出的基于身份的盲签名方案在随机预言模型下,针对并行选择消息和身份攻击的一次多伪造是安全的。

1.2 基于身份的盲签名方案比较

为了展示所提出方案相较于现有方案的优势,对基于身份的盲签名(IDBS)进行了简要比较,如下表所示:
| 方案 | 签名者 | 用户 | 验证者 | 移动次数 | 安全模型 |
| — | — | — | — | — | — |
| 我们的方案 | 3M | 4M + 4e | 4e | 2 | ROM + 1m - BDHI |
| ZK02 | 3M | 3M + 3e | 1E + 2e | 3 | ROM + CDH + ROS(?) |
| ZK03 | 2M | 4M + 2e | 1M + 2e | 3 | ROM + CDH + ROS

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值