非经典逻辑的证明复杂性:下界与系统模拟
1. 非经典逻辑证明复杂性的基础性质
在非经典逻辑的证明复杂性研究中,有几个重要的基础性质值得关注。
1.1 可行析取性质
对于直觉主义逻辑,Buss、Mints和Pudlák证明了其具有可行析取性质。即对于直觉主义逻辑的标准自然演绎演算(它与通常的直觉主义Frege系统多项式等价),存在一个算法A,对于析取式ϕ∨ψ的每个证明π,算法A能在π的大小的多项式时间内输出ϕ或ψ的证明。
随后,Ferrari、Fiorentini和Fiorino将这一结果扩展到了更多逻辑,包括直觉主义自然演绎、S4、S4.Grz和S4.1的自然演绎系统,以及GL和Fisher Servi的IK的Frege系统。
1.2 可行插值性质
可行插值是证明复杂性中获得下界的一种通用方法。在直觉主义逻辑中,Buss和Pudlák证明了其具有可行插值性质。从直觉主义重言式
((p_1 ∨¬p_1) ∧· · · ∧(p_n ∨¬p_n) →ϕ_0(\overline{p}, \overline{q}) ∨ϕ_1(\overline{p}, \overline{r}))
(其中(\overline{p})、(\overline{q})、(\overline{r})是不同的变量序列,(\overline{p})是(\phi_0)和(\phi_1)的公共变量)的证明π,我们可以构造一个大小为(|\pi|^{O(1)})的布尔电路C,使得对于每个输入(\overline{a} \in {0, 1}^n),如果(C(\overline{a}) = i),那么(\phi_i(\overline{p}/
订阅专栏 解锁全文
13

被折叠的 条评论
为什么被折叠?



