java数据结构与算法刷题-----LeetCode746. 使用最小花费爬楼梯

本文探讨了动态规划的本质,指出其是通过空间换时间的优化策略,强调了理解dp数组、递推公式的重要性,并批评了直接给出动态方程的教学方式。作者提供了爬楼梯问题的解题思路和两种空间复杂度不同的代码实现。
摘要由CSDN通过智能技术生成
java数据结构与算法刷题目录(剑指Offer、LeetCode、ACM)-----主目录-----持续更新(进不去说明我没写完):https://blog.csdn.net/grd_java/article/details/123063846

很多人觉得动态规划很难,但它就是固定套路而已。其实动态规划只不过是将多余的步骤,提前放到dp数组中(就是一个数组,只不过大家都叫它dp),达到空间换时间的效果。它仅仅只是一种优化思路,因此它目前的境地和线性代数一样----虚假的难。

  1. 想想线性代数,在国外留学的学生大多数不觉得线性代数难理解。但是中国的学生学习线性代数时,完全摸不着头脑,一上来就是行列式和矩阵,根本不知道这玩意是干嘛的。
  2. 线性代数从根本上是在空间上研究向量,抽象上研究线性关系的学科。人家国外的教科书都是第一讲就帮助大家理解研究向量和线性关系。
  3. 反观国内的教材,直接把行列式搞到第一章。搞的国内的学生在学习线性代数的时候,只会觉得一知半解,觉得麻烦,完全不知道这玩意学来干什么。当苦尽甘来终于理解线性代数时干什么的时候,发现人家国外的教材第一节就把这玩意讲清楚了。你只会大骂我们国内这些教材,什么狗东西(以上是自己学完线性代数后的吐槽,我们同学无一例外都这么觉得)。

而我想告诉你,动态规划和线性代数一样,我学完了才知道,它不过就是研究空间换时间,提前将固定的重复操作规划到dp数组中,而不用暴力求解,从而让效率极大提升。

  1. 但是网上教动态规划的兄弟们,你直接给一个动态方程是怎么回事?和线性代数,一上来就教行列式和矩阵一样,纯属恶心人。我差不多做了30多道动态规划题目,才理解,动态方程只是一个步骤而已,而这已经浪费我很长时间了,我每道题都一知半解不理解,过程及其痛苦。最后只能重新做。
  2. 动态规划,一定是优先考虑重复操作与dp数组之间的关系,搞清楚后,再提出动态方程。而你们前面步骤省略了不讲,一上来给个方程,不是纯属扯淡吗?
  3. 我推荐研究动态规划题目,按5个步骤,从上到下依次来分析
  1. DP数组及下标含义
  2. 递推公式
  3. dp数组初始化
  4. 数组遍历顺序(双重循环及以上时,才考虑)
  5. dp数组打印,分析思路是否正确(相当于做完题,检查一下)

在这里插入图片描述

在这里插入图片描述

先理解题目细节

在这里插入图片描述

  1. cost数组是离开每层楼梯向上爬所需体力,没有记录顶层,因为已经顶层了,没有比它搞一层的了,自然没有向上爬需要的体力。而我们要的是,到达顶层,需要的最小体力。
  2. 初始可以站在0号或1号位置,所以到达0和1号位置所需体力为0
  3. 每次要么攀登1层,要么攀登两层
  4. 之后的每一层,若想到达,需要花费的体力为:从上一个攀登的楼梯“x”离开所需体力(cost数组中的值)+ 到达“x”已经花费的体力
  5. 因为我们只需要最小的体力花费,所以只记录较小的值。
解题思路
  1. 暴力求解的思想,就是回溯算法,枚举每一种情况,拿到最小值,显然会做大量无效运算。
  2. 但是如果我们预先将其存储到dp数组,就可以直接通过dp[x], 获取dp数组中指定位置x的体力花费,而不用枚举。典型的动态规划题目
动态规划思考5步曲
  1. DP数组及下标含义

我们要求出的是最小体力花费,那么dp数组中存储的就是最小体力花费。要求出谁的最小体力花费就是下标的含义。显然是攀登到每层台阶的,那么下标就是代表谁的体力花费,也就是代表是哪一层楼梯的体力花费。显然,只需要一个下标即可表示,故这道题的dp数组只需要一维数组

  1. 递推公式
  1. 由题意可知,初始可以从0或1层开始,所以攀登到0或1所需体力花费为0.F(0) = F(1) = 0.
  2. 之后每一层,都需要判断它的前两层,到这一层的花费,谁更小。花费(从下面这两层到当前层X的花费)为:从下面两层离开所需的花费(cost中的值,因为要从它离开,到这个X层)+ 到达这两层本身已经花费的体力(到达下面那两层也是需要体力的)。也就是 F(n-1)+cost[n-1] 和 F(n-2)+cost[n-2]为到达X的两种方案花费。
  3. 因此,可以得到,从第二层开始,递推公式为前两层到它所需花费,且只考虑最小的那个 : F(n) = min( F(n-1)+cost[n-1] , F(n-2)+cost[n-2] )
  1. dp数组初始化

在这里插入图片描述

  1. 数组遍历顺序(因为这个数列是一维的,只需要一重循环,无需考虑这个)
  2. 打印dp数组(自己生成dp数组后,将dp数组输出看看,是否和自己预想的一样。)

在这里插入图片描述

代码:时间复杂度O(n).空间复杂度O(n)

在这里插入图片描述

class Solution {
    public int minCostClimbingStairs(int[] cost) {
        int length = cost.length;//cost的长度,不包含顶层。因为它记录的是从每一层向上爬所需体力,顶层不需要再爬
        //dp数组保存到达每一层的花费,一维数组即可,下标代表是哪一层
        int dp[] = new int[length+1];//而dp数组中需要记录到达顶层所需要的花费因此长度为length+1
        dp[0]=dp[1] = 0;//dp数组保存到达每次的花费,而我们是从0或1层才刚刚开始攀登,到达这两层,无需体力开销,都是0。
        for(int i = 2;i<=length;i++){//剩下每一层,因为每次只能攀登1或2层。只需考虑两种情况
            //选择前两层到它的最小开销,每个开销为,从自己离开需要的花费+到达自己已经用的体力
            dp[i] = Math.min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
        }
        return dp[length];
    }
}
学有余力的同学可以尝试这个方法,将空间复杂度变为常数级-----------------代码:时间复杂度O(n).空间复杂度O(1)

将dp数组优化掉,换成3个变量,滚动执行。将dp[0]换成prev。dp[1]换成curr,dp[2]换成next。也就是prev始终指向 i-2的位置。curr指向i-1. next指向i
在这里插入图片描述

class Solution {
    public int minCostClimbingStairs(int[] cost) {
        int length = cost.length;//cost的长度,不包含顶层。因为它记录的是从每一层向上爬所需体力,顶层不需要再爬
        //dp数组保存到达每一层的花费,一维数组即可,下标代表是哪一层
        int prev = 0,curr = 0;
        for(int i = 2;i<=length;i++){//剩下每一层,因为每次只能攀登1或2层。只需考虑两种情况
            //选择前两层到它的最小开销,每个开销为,从自己离开需要的花费+到达自己已经用的体力
            int next = Math.min(curr+cost[i-1],prev+cost[i-2]);
            prev = curr;
            curr = next;
        }
        return curr;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

殷丿grd_志鹏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值