并查集
解题思路:时间复杂度O(
n
∗
l
o
g
2
n
n*log_2n
n∗log2n),空间复杂度O(
n
n
n) |
---|
- 并查集是图论的经典算法,主要用于处理不相交集合的合并问题,常用于求连通子图,求最小生成树的Kruskal算法和求最近公共祖先(LCA)等等
- 其代码操作非常简单,初始化init,查询find,合并union
- 初始化操作:用一个数组parent来存储每个顶点的祖先,初始时将自己设置为自己的祖先
- 查询操作:找到i的祖先,index是否是祖先的条件为,parent[index] == index.入果不满足,就需要找到index的祖先x,并更新parent[index] = x
- 合并操作:将两个集合index1和index2合并,直接找到两个集合的祖先x和y,让x指向y
- 根据题目描述,一棵树中,边的数量比结点数量少1,但是现在加了一条边,让这颗树的边和结点数量一致了
- 树是连通无环的无向图,但是多了一条边就会出现环。也就是说,这道题的本质上就是让我们求出导致环出现的这条边(导致两个顶点属于同一连通分量的边)
- 使用并查集,每个集合代表一个连通分量,初始每个结点都属于不同连通分量。遍历每一条边连接的两个顶点
- 两个顶点属于不同连通分量,说明遍历到当前边之前,两个顶点不连通,因此当前边不会导致环的出现,则合并两个顶点的连通分量
- 两个顶点属于相同连通分量,说明在遍历到当前边之前,两个顶点已经连通(间接),而这条边又将两个顶点直接连通,从而导致环的出现,则它就是罪魁祸首。
class Solution {
public int[] findRedundantConnection(int[][] edges) {
int n = edges.length;
int[] parent = new int[n + 1];
for (int i = 1; i <= n; i++) {
parent[i] = i;
}
for (int i = 0; i < n; i++) {
int[] edge = edges[i];
int node1 = edge[0], node2 = edge[1];
if (find(parent, node1) != find(parent, node2)) {
union(parent, node1, node2);
} else {
return edge;
}
}
return new int[0];
}
public void union(int[] parent, int index1, int index2) {
parent[find(parent, index1)] = find(parent, index2);
}
public int find(int[] parent, int index) {
if (parent[index] != index) {
parent[index] = find(parent, parent[index]);
}
return parent[index];
}
}