java数据结构与算法刷题-----LeetCode684. 冗余连接

java数据结构与算法刷题目录(剑指Offer、LeetCode、ACM)-----主目录-----持续更新(进不去说明我没写完):https://blog.csdn.net/grd_java/article/details/123063846

文章目录

在这里插入图片描述

并查集

解题思路:时间复杂度O( n ∗ l o g 2 n n*log_2n nlog2n),空间复杂度O( n n n)
  1. 并查集是图论的经典算法,主要用于处理不相交集合的合并问题,常用于求连通子图,求最小生成树的Kruskal算法和求最近公共祖先(LCA)等等
  2. 其代码操作非常简单,初始化init,查询find,合并union
  1. 初始化操作:用一个数组parent来存储每个顶点的祖先,初始时将自己设置为自己的祖先
    在这里插入图片描述
  2. 查询操作:找到i的祖先,index是否是祖先的条件为,parent[index] == index.入果不满足,就需要找到index的祖先x,并更新parent[index] = x
    在这里插入图片描述
  3. 合并操作:将两个集合index1和index2合并,直接找到两个集合的祖先x和y,让x指向y
    在这里插入图片描述
  1. 根据题目描述,一棵树中,边的数量比结点数量少1,但是现在加了一条边,让这颗树的边和结点数量一致了
  2. 树是连通无环的无向图,但是多了一条边就会出现环。也就是说,这道题的本质上就是让我们求出导致环出现的这条边(导致两个顶点属于同一连通分量的边)
  3. 使用并查集,每个集合代表一个连通分量,初始每个结点都属于不同连通分量。遍历每一条边连接的两个顶点
  1. 两个顶点属于不同连通分量,说明遍历到当前边之前,两个顶点不连通,因此当前边不会导致环的出现,则合并两个顶点的连通分量
  2. 两个顶点属于相同连通分量,说明在遍历到当前边之前,两个顶点已经连通(间接),而这条边又将两个顶点直接连通,从而导致环的出现,则它就是罪魁祸首。
代码

在这里插入图片描述

class Solution {
    public int[] findRedundantConnection(int[][] edges) {
        int n = edges.length;//顶点个数
        int[] parent = new int[n + 1];//并查集中下标从1开始
        for (int i = 1; i <= n; i++) {
            parent[i] = i;
        }
        //遍历每个顶点的边的信息
        for (int i = 0; i < n; i++) {
            int[] edge = edges[i];//获取顶点i的边
            int node1 = edge[0], node2 = edge[1];//获取两条边相邻的顶点
            if (find(parent, node1) != find(parent, node2)) {//如果和顶点i都不属于同一个集合(连通分量)
                union(parent, node1, node2);//说明这条边不会导致环的出现,将两个顶点加入并查集
            } else {//如果属于同一个集合,说明人家两个顶点已经间接连接一起了,现在你这条边居然又把我俩直接连接了起来
                return edge;//此边是构成环的罪魁祸首,将其返回
            }
        }
        return new int[0];//无结果返回空
    }
    //并查集代码,合并
    public void union(int[] parent, int index1, int index2) {
        //合并index1和index2的步骤为:找到index1的祖先,然后找到index2的祖先
        //让index1的祖先指向index2的祖先,完成两个集合的合并。
        parent[find(parent, index1)] = find(parent, index2);
    }
    //从parent中查找index的祖先
    public int find(int[] parent, int index) {
        if (parent[index] != index) {//如果index不是自己指向自己,说明它自己不是集合中的根节点(祖先),他也有自己的祖先
            parent[index] = find(parent, parent[index]);//不断找到其祖先,然后将其祖先记录到parent[index]位置,保证parent[index]只要find一次,就必须指向index的祖先
        }
        return parent[index];//返回自己的祖先
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

殷丿grd_志鹏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值