算法 - 【受限条件下可到达节点的数目】

受限条件下可到达节点的数目

题目

现有一棵由 n 个节点组成的无向树,节点编号从 0 到 n - 1 ,共有 n - 1 条边。给你一个二维整数数组 edges ,长度为 n - 1 ,其中 edges[i] = [ai, bi] 表示树中节点 ai 和 bi 之间存在一条边。另给你一个整数数组 restricted 表示受限节点。

在不访问受限节点的前提下,返回你可以从节点 0 到达的最多节点数目。注意,节点 0 不会标记为受限节点。

示例1

受限条件下可到达节点的数目示例1

输入:n = 7, edges = [[0,1],[1,2],[3,1],[4,0],[0,5],[5,6]], restricted = [4,5]
输出:4
解释:上图所示正是这棵树。
在不访问受限节点的前提下,只有节点 [0,1,2,3] 可以从节点 0 到达。

示例2

受限条件下可到达节点的数目示例2

输入:n = 7, edges = [[0,1],[0,2],[0,5],[0,4],[3,2],[6,5]], restricted = [4,2,1]
输出:3
解释:上图所示正是这棵树。
在不访问受限节点的前提下,只有节点 [0,5,6] 可以从节点 0 到达。

  • 2 <= n <= 105
  • edges.length == n - 1
  • edges[i].length == 2
  • 0 <= ai, bi < n
  • ai != bi
  • edges 表示一棵有效的树
  • 1 <= restricted.length < n
  • 1 <= restricted[i] < n
  • restricted 中的所有值 互不相同

分析

这题说的是在一个有n个节点组成的无向树中,节点0所能到达的节点个数。这里说的无向树其实就是一个无向图,所以这题也就是对图的遍历。对于图的遍历常见的BFS,DFS和并查集,实际上这题使用这三种方式中的任何一种都可以解决,我们来看一下使用DFS怎么解决的。

从节点0开始递归遍历,查找所有和节点0相连的节点,为了方便查找我们可以使用n个集合记录和每一个节点相连的所有节点,还要使用一个数组来记录受限的节点和已经被访问过的节点。

代码

public int reachableNodes(int n, int[][] edges, int[] restricted) {
    // n个集合,记录与每一个节点相连的所有节点
    List<Integer>[] lists = new List[n];
    for (int i = 0; i < n; i++)// 初始化集合
        lists[i] = new ArrayList();
    for (int[] edge : edges) {
        // 因为是无向图,所以如果a和b相连,那么b也和a相连。
        lists[edge[0]].add(edge[1]);
        lists[edge[1]].add(edge[0]);
    }
    // 记录受限的节点和已经访问过的节点
    boolean[] isRestricted = new boolean[n];
    for (int restrict : restricted)
        isRestricted[restrict] = true;

    return dfs(0, lists, isRestricted);
}

private int dfs(int start, List<Integer>[] lists, boolean[] isRestricted) {
    if (isRestricted[start])// 如果是受限的节点或者是已经访问过的节点,直接跳过
        return 0;
    isRestricted[start] = true;// 标记为已访问
    int res = 1;
    for (int num : lists[start])// 递归和当前节点相连的所有节点。
        res += dfs(num, lists, isRestricted);
    return res;
}

原文:https://mp.weixin.qq.com/s/tQem05TNr7zglpkM15OW-Q

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值