题目
给你一个下标从 0 开始的字符串 word ,长度为 n ,由从 0 到 9 的数字组成。另给你一个正整数 m 。word 的可整除数组 div 是一个长度为 n 的整数数组,并满足:
- 如果 word[0,…,i] 所表示的数值能被 m 整除,div[i] = 1
- 否则,div[i] = 0
返回 word 的可整除数组。
示例1
输入:word = “998244353”, m = 3
输出:[1,1,0,0,0,1,1,0,0]
解释:仅有 4 个前缀可以被 3 整除:“9”、“99”、“998244” 和 “9982443” 。
示例2
输入:word = “1010”, m = 10
输出:[0,1,0,1]
解释:仅有 2 个前缀可以被 10 整除:“10” 和 “1010” 。
- 1 <= n <= 105
- word.length == n
- word 由数字 0 到 9 组成
- 1 <= m <= 109
分析
计算前 i 个字符串表示的数字能否被 m 整除,直接求余即可,比如 a%b=0,就表示 a 能被 b 整除。
我们还知道对于所有正整数(负的不满足)的取模运算都满足下面几个公式:
(a+b)%m=(a%m+b%m)%m
(a+b)%m=(a%m+b)%m
(a×10+b)%m=(a×10%m+b)%m
我们直接按照上面最后一个递推式,根据当前整数的余数,计算出包含下一位字符所表示的整数的余数,如果余数为 0 ,则表示能被 m 整除。
代码
public int[] divisibilityArray(String word, int m) {
int length = word.length();
int ans[] = new int[length];
long modSum = 0;
for (int i = 0; i < length; i++) {
modSum = modSum * 10 + word.charAt(i) - '0';
modSum %= m;
if (modSum == 0)// 能被m整除
ans[i] = 1;
}
return ans;
}
原文:https://mp.weixin.qq.com/s/4gvlZTMEfE2VcNROBuPh5g