題解/算法 {2575. 找出字符串的可整除数组}

Link

Solution

多动手多动手;

我们判断S[...,i]这个前缀串, 是否可以整除 M M M, 从算术本质来看, 令p = S[..., i-1], 则有: p * 10 + S[i] (%M) = 0, 即(p%M) * 10 + S[i] (%M) = 0

故, 我们只需令p = S[..., i-1] % M, 然后执行p *= 10, p += S[i], p %= M
也就是, 在i时 令pS[...,i] % M即可;

所以本题的核心, 就是将 M | a这个整除问题, 转换为 a % M == 0这个取模问题!

Code

    vector<int> divisibilityArray(string S, int M) {
        long long p = 0;
        int n = S.size();
        vector< int> ans( n, 0);
        for( int i = 0; i < n; ++i){
            p *= 10;  p %= M;
            int c = (S[ i] - '0');
            p += c;  p %= M;
            if( p == 0){
                ans[ i] = 1;
            }
        }
        return ans;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值