【SRDCFdecon】训练集自适应去污:一种用于判别式跟踪的统一公式

Adaptive Decontamination of the Training Set: A Unified Formulation for Discriminative Visual Tracking(SRDCFdecon)

训练集自适应去污:判别视觉跟踪的统一公式

本文是CVPR2016 Martin Danelljan关于改进跟踪问题训练数据的尝试,后期他的论文几乎都有引证这一篇。

原文摘要

近年来,基于检测的跟踪方法显示出了良好的性能。在这些方法中,跟踪模型很大程度上依赖于训练集的质量。由于标记训练数据的数量有限,需要由跟踪器本身提取和标记额外的样本。 由于遮挡、偏差和其他干扰,这通常会导致包含损坏的训练样本。现有的检测跟踪方法要么忽略这个问题,要么使用单独的组件来管理训练集。我们提出了一种新的通用方法,以减轻在跟踪检测框架中的训练样本损坏的问题。我们的方法通过评估样本的质量来动态地管理训练集。与现有的方法相反,我们提出了一个统一的公式,通过在目标外观模型和样本质量权值上最小化单一损失。

提出了一种跟踪模型与训练样本权值联合学习的新公式。我们的公式是通用的,可以集成到常见的监督学习方法中。

目前的训练集管理

  • 直接丢弃较差样本
  • 采用专门的组件进行管理
  • 基于距离定义的样本优劣
  • 为样本管理专门设计的滤波器

背景

监督学习的一般形式

考虑监督学习的训练样本一般形式: { ( x j , y j ) } j = 1 n \{ (x_j,y_j) \}^{n}_{j=1} {(xj,yj)}j=1n,其中 x j ∈ X x_j\in\mathcal{ X} xjX代表特征向量, y j ∈ Y y_j\in\mathcal{ Y} yjY代表标签向量,对于跟踪问题,Loss函数经常定义为
J θ = ∑ k = 1 n L ( θ , x j , y j ) + λ R ( θ ) . ( 1 ) J_\theta = \sum_{k=1}^n L(\theta,x_j,y_j) + \lambda R(\theta).\qquad\qquad(1) Jθ=k=1nL(θ,xj,yj)+λR(θ).(1)
其中, L : Ω × X × Y → R L:\Omega\times\mathcal{ X}\times\mathcal{ Y}\to\R L:Ω×X×YR指出了 L ( θ , x j , y j ) L(\theta,x_j,y_j) L(θ,xj,yj)对于训练样本 ( x j , y j ) (x_j,y_j) (xj,yj)与参数 θ \theta θ有关的训练损失,常量 λ ≥ 0 \lambda\ge0 λ0用于控制正则化函数 R : Ω → R R:\Omega\to\R R:ΩR.
对于可以使用上式的SVM或者DCF,可以令 y j = 0 y_j=0 yj=0作为背景、 y j = 1 y_j=1 yj=1作为前景。可用连续值 y j ∈ [ 0 , 1 ] y_j\in[0,1] yj[0,1]标记,或者 Y \mathcal{Y} Y来标记边界盒的变化.我们重写(1)式以突出跟踪问题中时间采样的效果,令 ( x j k , y j k ) (x_{jk},y_{jk}) (xjk,yjk)表示帧号 k k k的第 j j j个训练样本,假设在 k → { 1 , . . . , t } k\to\{1,...,t\} k{1,...,t}帧中包含 n k n_k nk个样本, t t t代表当前帧,通常的, k k k帧中提取的用于估计目标位置的正样本和负样本 ( x j k , y j k ) (x_{jk},y_{jk}) (xjk,yjk),我们更新Loss的形式
J θ = ∑ k = 1 t α k ∑ j = 1 n k L ( θ , x j k , y j k ) + λ R ( θ ) . ( 2 ) J_\theta = \sum_{k=1}^t \alpha_k\sum_{j=1}^{n_k} L(\theta,x_{jk},y_{jk}) + \lambda R(\theta).\qquad\qquad(2) Jθ=k=1tαkj=1nkL(θ,xjk,yjk)+λR(θ).(2)
其中,常量 α k ≥ 0 \alpha_k\ge0 αk0表示 k k k帧中样本的影响, α k \alpha_k αk增大会使得从 k k k帧中提取的 { ( x j , y j ) } j = 1 n k \{ (x_j,y_j) \}^{n_k}_{j=1} {(xj,yj)}j=1nk具有更大权重。通常,DCF跟踪器的更新会使得样本权重逐渐下降,而SVM在处理时事实上也抛弃了它认为不合适的样本。

考虑跟踪问题的在线学习/在线推断特性,对于Tracker的在线参数更新,通常会有以下的问题:

  1. 由于目标旋转或变形等原因,不准确的跟踪预测会导致样本不对齐。这可能导致模型漂移或跟踪失败。
  2. 目标的部分或全部遮挡导致正样本被遮挡对象破坏。这是跟踪失败的一个常见原因,因为外观模型由于背景杂乱而受到污染。
  3. 扰动,如运动模糊,可以导致目标的扭曲视图。这些因素导致在学习过程中包含损坏的训练样本,从而降低了模型的判别能力。

目前已有方法

  1. 基于PSR(峰值旁瓣比,为最大置信分与周围得分(峰值指定邻域外)的标准差之比)的样本去除。
  2. 使用基于熵的最小化方法来确定最佳模型。该系统由当前跟踪模型和早期帧的快照组成。如果出现不一致,则选择具有最小熵准则作为新的跟踪模型。
  3. 通过基于时间和空间约束生成正样本和负样本来解决漂移问题。
  4. 提出一种策略,通过重新检查以前被拒绝的样本来更新培训集。
  5. 使用基于关键点的长期记忆组件,检测背景杂乱并刷新短期记忆。

本工作的三个假设

  1. 连续的权重值 对于运动模糊,部分遮挡的等情况的样本并未完全损坏,仍具有外观特性,二值化的处理往往会将其抛弃。
  2. 理想情况下,在更新特定培训样本(包括最近的框架)的重要性时,应考虑所有可用信息。
  3. 动态的样本优先,在目标快速变形和旋转的情况下,跟踪器应强调最近的样本的鲁棒性。动态先验知识是自底向上信息的补充,有望提高性能。

模型构建

我们考虑联合估计模型参数样本权重 α k \alpha_k αk和外观模型 θ \theta θ,引入最小化联合损失 J ( θ , α ) J(\theta,\alpha) J(θ,α)
J ( θ , α ) = ∑ k = 1 t α k ∑ j = 1 n k L ( θ , x j k , y j k ) + 1 μ ∑ k = 1 t α k 2 ρ k + λ R ( θ ) . ( 3 a ) J(\theta,\alpha)=\sum_{k=1}^t \alpha_k\sum_{j=1}^{n_k} L(\theta,x_{jk},y_{jk})+\frac{1}{\mu}\sum_{k=1}^t \frac{\alpha_k^2}{\rho_k}+ \lambda R(\theta).\qquad\qquad(3a) J(θ,α)=k=1tαkj=1nkL(θ,xjk,yjk)+μ1k=1tρkαk2+λR(θ).(3a)
满足:
α k ≥ 0 , k = 1 , . . . , t . ∑ k = 1 t α k = 1. \alpha_k\ge0,k=1,...,t. \\ \sum_{k=1}^t\alpha_k=1. αk0,k=1,...,t.k=1tαk=1.

μ → ∞ \mu\to\infty μ相当于(3a)式中去除第二项,也就是 α \alpha α项没有进行正则化
μ → 0 \mu\to0 μ0,对于确定的 θ \theta θ α k → ρ k \alpha_k\to\rho_k αkρk,理解为后续帧几乎没有权重

迭代求解
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值