【CVPR 2019目标跟踪】论文速读

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/greatstriker/article/details/89187576

目前获知的论文列表

CVPR2019

  • ATOM: Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, Michael Felsberg. ATOM: Accurate Tracking by Overlap Maximization[paper][code]

  • TADT: Xin Li, Chao Ma, Baoyuan Wu, Zhenyu He, Ming-Hsuan Yang. “Target-Aware Deep Tracking” CVPR (2019).[paper][project][official-code-matlab]

  • UDT+: Wang, Ning and Song, Yibing and Ma, Chao and Zhou, Wengang and Liu, Wei and Li, Houqiang. “Unsupervised Deep Tracking.” CVPR (2019).[paper][official-code-matlab][official-code-pytorch]

  • SiamMask: Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, Philip H.S. Torr. “Fast Online Object Tracking and Segmentation: A Unifying Approach.” CVPR (2019).[paper][project][code]

  • CIR: Zhipeng Zhang, Houwen Peng. “Deeper and Wider Siamese Networks for Real-Time Visual Tracking.” CVPR (2019).[paper][code]

  • SiamRPN++: Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing, Junjie Yan. “SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks.” CVPR (2019).[paper][project]

  • C-RPN: Heng Fan, Haibin Ling. “Siamese Cascaded Region Proposal Networks for Real-Time Visual Tracking.” CVPR (2019).[paper]

  • SPM-Tracker: Guangting Wang, Chong Luo, Zhiwei Xiong, Wenjun Zeng. SPM-Tracker: Series-Parallel Matching for Real-Time Visual Object Tracking. [paper]

以下不对应上述论文顺序

Target-Aware Deep Tracking

目标感知的深度跟踪
在这里插入图片描述

在这里插入图片描述
文章的核心主要是中间的Target aware部分,这部分只在初始化阶段执行一次,核心点在于降维。
Grad-CAM(基于梯度定位的可视化深度神经网络解释)中,提出了并不是所有语义特征都发挥很大作用,所以用map对其求偏导可以获知不同Filter的贡献,作者利用这个思路,将预训练的CNN在init阶段进行改造/降维,利用到跟踪中,考虑到跟踪问题的特性,又引入了常用的脊回归和用于Scale的Rank Loss,后续阶段是经典的Siamese跟踪器的处理。

GAP过程:
在这里插入图片描述

Unsupervised Deep Tracking

马超大佬参与的另一篇新作,不得不说还是又是在跟踪领域上开启了一些新思路
在这里插入图片描述
利用正向和反向的跟踪进行无监督的训练。
在首帧时随机初始化bbox。
在这里插入图片描述
多帧的利用来避免tracker的偶然性成功,允许积累误差并在必要时break。
ECObaseline。

ATOM: Accurate Tracking by Overlap Maximization

说起来Martin毕业了…ATOM这篇论文没有包括在他的毕业论文里,当然主要也是和他的主要工作内容有所区别。
Martin Danelljan的主要成就还是在于对相关滤波器的改进上,以及最著名的连续卷积算子的提出CCOT,ECO。
Martin Danelljan博士论文解读
那么ATOM架构如下:
在这里插入图片描述
通过一个IoU-Net和一个简单的判别式滤波器构成,那么滤波器在线更新学习参数等不再赘述,重点在于大规模离线训练的IoUNet。

B. Jiang, R. Luo, J. Mao, T. Xiao, and Y. Jiang. Acquisition of localization confidence for accurate object detection. In ECCV, 2018

IoUNet的主要灵感来自于上面这篇Paper,对于传统的目标检测来说,bounding box regression的方法往往会存在训练的上界,过度训练之后效果下降,作者认为可以将回归问题变成优化问题求解。以往的检测器(RPN)从图片中选取若干box,判别前景背景信息,再NMS,那么NMS筛选过程中往往是基于分类置信度的排序,那作者认为应该根据位置置信度进行排序。给出了一种基于IoU最大化的优化 模型。

Martin将这种方法借鉴,只不过原作的模型需要对单独的类别训练,而Martin设计了一个generic的模型,通过在首帧的降维,选取更合适的IoU predicator。
当热,这个模型没那么简单:
在这里插入图片描述
在这里插入图片描述

仍然是令人惊艳的结果。此外在多个主流数据集上的测试结果都很强大。

展开阅读全文

没有更多推荐了,返回首页