算法分析与实践-作业1-Kruskal构造最小生成树

Kruskal算法

1. 问题

在有n个结点的加权连通图内,求得最小生成树,即生成一个包含n个结点且所有边的权值最小的树。

2.解析

  • 记Graph中有v个顶点、e个边

  • 新建图Graphnew,Graphnew中拥有原图中同样的e个顶点,但没有边

  • 将原图Graph中全部e个边按权值从小到大排序

  • 循环:从权值最小的边開始遍历每条边 直至图Graph中全部的节点都在同一个连通分量中

    • if 这条边连接的两个节点于图Graphnew中不在同一个连通分量中
      • 增加这条边到图Graphnew中
Step图例说明可选边已选边
1在这里插入图片描述首先第一步。我们有一张图Graph,有若干点和边--
2在这里插入图片描述将全部的边的长度排序,用排序的结果作为我们选择边的根据。这里体现了贪心算法的思想。资源排序,对局部最优的资源进行选择,排序完毕后。我们优先选择要边EF。这样我们的图就变成了左图EF-
3在这里插入图片描述在剩下的变中寻找。我们找到了BDBDEF
4在这里插入图片描述依次类推我们找到了5,5,即AC、BE。AC、BEEF、BD
5在这里插入图片描述最后找到CDCDEF、BD、AC、BE
6在这里插入图片描述最后形成最小生成树-EF、BD、AC、BE、CD

3.设计

#include <stdio.h>
#include <stdlib.h>
#define NUM 20 //最大容量 
#define VertexType int
typedef struct edge{
    VertexType adjvex; //起始点 
    VertexType end;		//终点 
    VertexType arcs;  //权值 
} edge[NUM];
//定义辅助数组
typedef struct {
    VertexType value;//顶点数据
    int sign;//每个顶点所属的集合
}Dist[NUM];
Dist dist;
int main(){
    int arcnum,vexnum,i,j;
    edge edges;
    //创建连通图
    CreateUDN(&edges,&vexnum,&arcnum);
    //对连通网中的所有边进行升序排序,结果仍保存在edges数组中
    //创建一个空的结构体数组,用于存放最小生成树
    edge minTree;
    //设置一个用于记录最小生成树中边的数量的常量
    int num=0;
    //遍历所有的边
    for (i=0; i<arcnum; i++) {
        int initial= edges[i].adjvex;
        int end= edges[i].end;
        //如果顶点位置存在且顶点的标记不同,说明不在一个集合中,不会产生回路
        if (initial!=-1&& end!=-1&&dist[initial].sign!=dist[end].sign) {
            //记录该边,作为最小生成树的组成部分
            minTree[num]=edges[i];
            //计数+1
            num++;
            //将新加入生成树的顶点标记全部更改为一样的
            //如果选择的边的数量和顶点数相差1,证明最小生成树已经形成,退出循环
        }
    }
    //输出语句
    return 0;
}

4.源码

https://github.com/QAQnoname/homework/blob/master/%E4%BD%9C%E4%B8%9A1/kruskal.c

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值