Kruskal算法
1. 问题
在有n个结点的加权连通图内,求得最小生成树,即生成一个包含n个结点且所有边的权值最小的树。
2.解析
-
记Graph中有v个顶点、e个边
-
新建图Graphnew,Graphnew中拥有原图中同样的e个顶点,但没有边
-
将原图Graph中全部e个边按权值从小到大排序
-
循环:从权值最小的边開始遍历每条边 直至图Graph中全部的节点都在同一个连通分量中
- if 这条边连接的两个节点于图Graphnew中不在同一个连通分量中
- 增加这条边到图Graphnew中
- if 这条边连接的两个节点于图Graphnew中不在同一个连通分量中
Step | 图例 | 说明 | 可选边 | 已选边 |
---|---|---|---|---|
1 | 首先第一步。我们有一张图Graph,有若干点和边 | - | - | |
2 | 将全部的边的长度排序,用排序的结果作为我们选择边的根据。这里体现了贪心算法的思想。资源排序,对局部最优的资源进行选择,排序完毕后。我们优先选择要边EF。这样我们的图就变成了左图 | EF | - | |
3 | 在剩下的变中寻找。我们找到了BD | BD | EF | |
4 | 依次类推我们找到了5,5,即AC、BE。 | AC、BE | EF、BD | |
5 | 最后找到CD | CD | EF、BD、AC、BE | |
6 | 最后形成最小生成树 | - | EF、BD、AC、BE、CD |
3.设计
#include <stdio.h>
#include <stdlib.h>
#define NUM 20 //最大容量
#define VertexType int
typedef struct edge{
VertexType adjvex; //起始点
VertexType end; //终点
VertexType arcs; //权值
} edge[NUM];
//定义辅助数组
typedef struct {
VertexType value;//顶点数据
int sign;//每个顶点所属的集合
}Dist[NUM];
Dist dist;
int main(){
int arcnum,vexnum,i,j;
edge edges;
//创建连通图
CreateUDN(&edges,&vexnum,&arcnum);
//对连通网中的所有边进行升序排序,结果仍保存在edges数组中
//创建一个空的结构体数组,用于存放最小生成树
edge minTree;
//设置一个用于记录最小生成树中边的数量的常量
int num=0;
//遍历所有的边
for (i=0; i<arcnum; i++) {
int initial= edges[i].adjvex;
int end= edges[i].end;
//如果顶点位置存在且顶点的标记不同,说明不在一个集合中,不会产生回路
if (initial!=-1&& end!=-1&&dist[initial].sign!=dist[end].sign) {
//记录该边,作为最小生成树的组成部分
minTree[num]=edges[i];
//计数+1
num++;
//将新加入生成树的顶点标记全部更改为一样的
//如果选择的边的数量和顶点数相差1,证明最小生成树已经形成,退出循环
}
}
//输出语句
return 0;
}
4.源码
https://github.com/QAQnoname/homework/blob/master/%E4%BD%9C%E4%B8%9A1/kruskal.c