- 博客(102)
- 收藏
- 关注
原创 【随机过程】19 - 随机过程的线性预测问题
随机过程的线性预测问题文章目录随机过程的线性预测问题1. 随机过程的估计问题概述1.1 预测问题1.2 内插问题1.3 滤波问题2. 随机过程的可预测性2.1 新息过程2.1.1 信息过程的定义2.1.2 估计的子空间分解2.1.3 新息过程的性质2.2 随机过程的正则性与奇异性2.2.1 正则性和奇异性概述2.2.2 奇异性的充要条件2.2.3 正则性的充要条件2.3 正则性的解析判据--Paley-Wiener条件2.4 随机过程的分解2.4.1 Wold分解2.4.2 Doob-Meyer分解3.
2022-01-15 12:19:21 1142 3
原创 【随机过程】18 - 连续时间马氏链与排队论
连续时间马尔科夫链与排队论文章目录连续时间马尔科夫链与排队论1. 连续时间马氏链1.1 概述1.2 停留时间的分布1.3 跳变概率1.3.1 连续时间马氏链CK方程1.3.2 Q矩阵1.3.3 前进后退方程1.4 泊松过程与连续时间马氏链1.5 连续时间马氏链的极限分布2. M/M/1模型排队论2.1 模型描述2.2 模型建立--生灭模型2.3 平均队长2.4 平均等待时间2.5 little's formula1. 连续时间马氏链Continuous Time Markov&nb
2022-01-15 12:13:12 3067 5
原创 【随机过程】 17 -离散时间马氏链典型应用
离散时间马尔科夫链的典型应用文章目录离散时间马尔科夫链的典型应用0. 概述1. Page Rank1.1 背景1.2 模型建立1.3 模型求解2. MCMC2.1 概述2.2 实现思路2.3 具体实现2.3.1 第一步:细致平衡2.3.2 第二步:构成一步转移矩阵P2.3.3 第三步:运行马氏链3. 隐马尔科夫模型3.1 概述3.2 计算隐马尔科夫模型观测数据的概率3.2.1 直接计算方法3.2.2 前向递推3.3 计算状态的条件概率最大值0. 概述 这部分要讲解马尔科夫链排在前三的应用。Pag
2022-01-15 12:09:51 1517
原创 【随机过程】 16 - 离散时间马氏链的渐进行为
离散时间马尔科夫链的渐进行为文章目录离散时间马尔科夫链的渐进行为1. 常返性回顾1.1 对常返性的三个认识1.2 常返性的性质2. 周期性2.1 马氏链渐进行为分析2.2 状态的周期性定义2.3 周期性的性质2.4 弱遍历性2.4.1 定义2.4.2 Cesaro Sum2.4.3 平均返回步数2.4.4 常返态的进一步分类2.5 周期性与极限行为2.5.1 转移概率极限的存在性2.5.2 极限转移概率的计算2.5.3 求解方程的注解2.5.4 平稳分布2.5.5 极限与Ceasaro和3. 马氏链应用举
2022-01-15 12:05:52 852
原创 【随机过程】15 - 离散时间马尔科夫链状态的常返性
离散时间马尔科夫链状态的常返性文章目录离散时间马尔科夫链状态的常返性1. 马尔科夫链的状态1.1 常返态的定义1.2 常返态的判据1.3 常返态的性质1.3.1 相通与常返性1.3.2 转移概率与常返性1.3.3 有限状态与常返性1.3.4 不可约与常返性1.3.5 非常反态的一个判据2. 随机游动的常返性2.1 一维随机游动2.2 二维随机游动2.3 多维随机游动1. 马尔科夫链的状态 这部分来探讨马尔科夫链状态的分类问题Classification of Status\t
2022-01-15 12:01:06 4818
原创 【随机过程】14 - 离散时间马氏链与转移概率
离散时间马尔科夫链与转移概率文章目录离散时间马尔科夫链与转移概率1. 马尔科夫性的引入2. 马尔科夫性与马尔科夫链2.1 定义2.2 马尔科夫性的解读2.3 马尔科夫性的扩展2.3.1 模糊未来2.3.2 模糊过去2.3.3 模糊当前3. 转移概率3.1 转移概率引入3.2 转移概率的推广与简化3.2.1 推广3.2.2 平稳转移概率--四维简化到三维3.2.3 Chapman-Kolmogorov方程--三维简化到二维(1) 概述(2) CK方程直观表示(3) CK方程证明(4) CK方程与转移概率的简
2022-01-15 11:55:53 1509 1
原创 【随机过程】13 - 过滤泊松的应用
过滤泊松过程的应用文章目录过滤泊松过程的应用1. 公交车调度问题2. 保险定价与精算问题3. 排队论3.1 概述3.2 排队模型1. 公交车调度问题 我们下面举例一个公交车站的例子。我们假设(0,T)要发n辆公交车,我们假设公交车发车的时间的确定的,但是不一定相同。乘客们按照泊松过程到达车站,我们假定公交车一出发,就能够把车站所有人都带走。我们要给出一个最优调度方案,让乘客总的等待时间的均值最小。我们假设等待过程中,乘客到来的强度是相同的。Bus Stop[0,T]n buse
2022-01-15 11:49:18 1822
原创 【随机过程】12 - 泊松过程的推广型
泊松过程的推广型文章目录泊松过程的推广型1. 泊松过程基本型回顾1.1 性质1.2 泊松分布与射击模型2. 泊松过程的推广型2.1 放宽平稳性2.1.1 非平稳泊松过程2.2 放宽稀疏性2.3.1 复合泊松过程2.3.2 复合泊松过程举例2.3.3 泊松过程的和2.3.4 泊松过程的差2.3.5 复合泊松与稀疏性2.3 放宽独立性2.3.1 案例引入2.3.2 Inspection Paradox2.3.3 间隔时间条件分布求解--微元法引入(1) t时刻内发生了1次(2) t时刻内发生了2次(3) t时
2022-01-04 09:14:18 1142 1
原创 【随机过程】11 - 泊松过程及其解析计算
泊松过程定义及其解析计算文章目录泊松过程定义及其解析计算1. 课程回顾与概述2. 泊松过程的解析计算2.1 点过程模型建立2.2 泊松过程与点过程2.3 泊松过程的概率计算2.3.1 母函数2.3.2 母函数的求解(1) 拆分(2) 第一部分求解与指数函数证明(3) 第三部分求解与稀疏性(4) 第二部分求解(5) 最终求解2.3.3 泊松过程与泊松分布3. 泊松过程的统计特性3.1 均值与方差3.2 强度3.3 二阶矩3.4 样本轨道4. 泊松过程的两要素及其分布规律4.1 泊松过程两要素4.2 泊松过程
2022-01-04 09:03:36 2552
原创 【随机过程】9 - 高斯分布及其非线性性质
高斯分布及其非线性性质文章目录高斯分布及其非线性性质1. 概述2. Polynonial2.1 高阶矩2.1.1 一维高斯的高阶矩2.1.2 多维高斯高阶矩2.2 平方器2.2.1 相关函数2.2.2 分布函数3. Precewise Linear3.1 硬限幅器(极化)3.1.1 定义3.1.2 相关函数4. Price Theorem -- 分析非线性系统的工具4.1 公式定义4.2 公式证明4.3 price theorem的应用4.3.1 price theorem 与 hard limite
2022-01-03 21:00:34 1639
原创 【随机过程】10 -高斯过程与布朗运动
高斯过程与布朗运动文章目录高斯过程与布朗运动1. 布朗运动概述1.1 定义1.2 布朗运动与高斯过程1.3 布朗运动的均值和协方差2. 布朗运动的变形2.1 做差2.2 线性因子2.3 倒数3. 布朗运动的性质3.1 反射原理3.1.1 停时特性3.1.2 强马尔科夫性3.1.3 强马尔科夫性的应用:反射3.1.4 基于反射计算复杂的分布3.2 二次变差4. 伊藤微积分4.1 布朗运动的微分4.2 布朗运动的积分4.3 期权定价问题4.3.1 布朗运动与金融建模4.3.2 期权与对冲问题4.3.3 期权
2022-01-03 20:55:01 5657
原创 【随机过程】8 - 多元高斯分布及其线性性质
多元高斯分布及其线性性质文章目录多元高斯分布及其线性性质1. 高斯过程定义2. 从高斯分布到多元高斯分布2.1 定义2.2 多元高斯概率密度函数2.3 多元高斯特征函数2.4 多元高斯的线性性质3. 高斯边缘分布与联合分布3.1 从联合分布到边缘分布3.2 从边缘分布到联合分布3.3 联合高斯分布判据4. 高斯分布的相关性与独立性4.1 独立性和相关性4.2 高斯分布的不相关和独立4.3 联合高斯分布的不相关和独立4.4 两个例子4.4.1 利用独立性求条件概率4.4.2 解释方差和样本方差的关系(1)
2021-12-05 13:13:08 3745 4
原创 【随机过程】 7 - 高斯过程的初步认识
高斯过程的初步认识文章目录高斯过程的初步认识1. 概述2. 扩散方程与高斯过程3. 最大熵与高斯分布3.1 双边无界3.2 单边无界3.3 双边有界4. 中心极限定理、大数定理与高斯过程4.1 中心极限定理4.1.1 中心极限定理的描述4.1.2 特征函数4.1.3 高斯分布的特征函数4.1.4 特征函数与随机变量和的分布4.1.5 中心极限定理的证明4.2 大数定理证明4.3 中心极限定理与大数定理的关系4.3 中心极限定理的应用--随机游动问题1. 概述 随机过程研究的角度主要包括:线性的角度、
2021-12-05 13:07:03 1122 1
原创 【随机过程】 6 - 多元相关
多元相关文章目录多元相关1. 概述2. 三个角度看待相关矩阵2.1 白化2.2 PCA2.2.1 原理2.2.2 PCA与去相关2.2.3 PCA几何图形影响因素2.3 展开2.3.1 随机矢量的KL展开2.3.2 随机过程的KL展开2.3.3 周期性宽平稳随机过程的KL展开2.3.4 非周期性宽平稳随机过程的KL展开--谱表示1. 概述 相关是研究随机过程的重要工具。之前,我们研究的都是两个随机变量的相关性。现在我们想扩展到随机矢量的相关性。对多元相关问题研究的角度有两个,一个是从分布的角度来看的
2021-12-05 13:02:33 2096 1
原创 【随机过程】 5 - 非平稳过程
非平稳过程文章目录非平稳过程1. 问题引入2. 循环平稳过程2.1 循环平稳过程的定义2.2 循环平稳过程与宽平稳随机过程的关系2.3 条件期望2.3.1 定义2.3.2 条件期望的性质2.3.3 条件期望的应用2.4 循环平稳过程的应用--PAM2.4.1 PAM概述2.4.2 PAM的时域分析2.4.3 PAM的频域分析3. 正交增量过程3.1 定义3.2 时域分析3.3 正交增量过程的应用--布朗运动3.3.1 概述3.3.2 时域分析3.3.3 平稳分量与非平稳分量3.3.4 伊藤公式与随机微分方
2021-12-05 12:59:17 3213
原创 【随机过程】 4 -随机过程的频域分析2 - 谱表示
随机过程的频域分析文章目录随机过程的频域分析1. 谱表示的定义2. 谱表示的性质2.1 概述2.2 正交增量特性2.3.1 正交增量过程的定义2.3.2 正交增量特性的解读2.3 谱表示与功率谱3. 谱表示与线性系统响应4. 谱表示与宽平稳随机过程4.1 宽平稳随机过程与复指函数的等距同构4.2 等距同构的应用--采样定理1. 谱表示的定义 对随机过程做傅里叶分析的困难在于,随机过程一般不是绝对可积的,积分不收敛就没有办法做傅里叶变换。 如果随机过程能够做傅里叶变换的话,应该是写成这样的Z(t
2021-12-05 12:53:59 1926 1
原创 【随机过程】 3 - 随机过程的频域分析1 - 功率谱
随机过程的频域分析文章目录随机过程的频域分析1. 什么是谱2. 确定信号的频谱2.1 周期信号的频谱2.2 非周期信号的频谱3. 随机信号的谱3.1 随机信号做傅里叶分析的困难3.2 功率谱密度的物理和数学表示形式3.2.1 功率谱密度的物理表示3.2.2 功率谱密度的数学表示3.3 功率谱密度的解读3.3.1 量纲分析3.3.2 谱3.3.3 密度3.3.4 wiener和khinchin3.4 功率谱密度的性质3.4.1 非线性3.4.2 偶函数3.5 wiener-khinchin关系的应用3.6
2021-12-05 12:51:08 2149 1
原创 【随机过程】 2 - 随机过程的时域分析
随机过程的时域分析文章目录随机过程的时域分析1. 一般随机过程的相关函数的性质2. 宽平稳随机过程的性质2.1 偶函数2.2 零点取得最大值2.3 正定性2.3.1 正定性的定义2.3.2 从正定性引入相关函数的性质2.3.3 相关函数正定性的证明2.4 均方周期性2.5 均方连续性2.5.1 性质描述2.5.2 连续性与极限(1) 随机过程极限的定义(2) 距离的定义2.5.3 均方连续证明2.5.4 小结3. 函数的正定性与傅里叶变换3.1 性质3.2 证明3.3 应用3.3.1 矩形窗3.3.2 三
2021-12-05 12:47:23 1239
原创 【随机过程】 1 - 相关与随机过程
相关与随机过程文章目录相关与随机过程1. 相关的直观表示1.1 多维随机变量的联合概率密度与联合分布1.2 两个随机变量的相关1.2.1 Independent1.2.2 Correlated1.2.3 Linear Correlation2. 随机变量的线性相关2.1 线性相关的求解及其含义2.2 相关的符号表示说明2.3 独立与不相关2.4 小结3. 相关的几何意义--内积3.1 内积的性质3.2 相关与相关系数3.2.1 相关与内积3.2.2 相关系数与内积3.3 内积与柯西不等式3.4 从几何角度
2021-12-05 12:43:46 1547 1
原创 【现代信号处理】 19 -谱分析的参数化方法
谱分析的参数化方法文章目录谱分析的参数化方法1. 非参数化方法与参数化方法1.1 非参数化方法1.2 参数化方法2. 参数化方法模型的建立2.1 有理谱2.2 模型的建立2.3 ARMA概述2.4 AR模型与MA模型3.AR模型3.1 AR模型的求解3.1.1 相关分析法3.1.2 最小二乘法3.2 AR模型的谱3.3 AR模型的阶与Capon谱3.3.1 相关矩阵等式3.3.2 相关矩阵的分解3.3.3 相关矩阵与Capon谱4.MA模型5. ARMA模型5.1 相关分析法5.2 Two-stage L
2021-12-02 19:05:56 1601
原创 【现代信号处理】 18 - 随机过程的线性预测
随机过程的线性预测文章目录随机过程的线性预测1. 随机过程线性预测问题1.1 问题引入1.2 公式解读1.3 白噪声的预测误差分析2. 相关矩阵的正定性2.1 问题描述与结论2.1.1 相关矩阵的建立2.1.2 相关矩阵的性质2.1.3 相关矩阵正定性的结论2.2 证明3. 完美预测3.1 相关矩阵的奇异性3.2 相关矩阵完全奇异3.3 相关矩阵部分奇异3.4 小结4. 非完美预测4.1 非完美预测的条件4.2 谱分解4.3 线性代数分析法与预测误差4.3.1 相关矩阵的LU分解4.3.1.1 Chole
2021-12-02 19:00:48 1765
原创 【现代信号处理】17 - 基于滤波器组的谱估计
基于滤波器组的谱估计–Filter-Bank Method文章目录基于滤波器组的谱估计--Filter-Bank Method1. 滤波器组1.1 分段处理谱估计问题1.2 滤波器作为谱估计的手段1.3 滤波器与滤波器组2. 滤波器组与周期图之间的关系3. 数据无关的滤波器组方法--Slepian 滤波器3.1 设计目标3.2 计算3.2.1 约束条件的计算3.2.2 优化目标的计算3.2.3 对γ矩阵的分析3.2.4 slepian window4. Multitaper4.1 周期图谱中的trade
2021-12-02 18:55:37 1130
原创 【现代信号处理】 16 - 谱表示与PSWF表示
谱表示与长球面波函数PSWF文章目录谱表示与长球面波函数PSWF1. 问题引入2. 随机矢量去相关化与KL展开3. 随机过程的KL展开与谱表示3.1 泛函分析概述3.2 特征函数与积分方程3.3 宽平稳周期性随机过程的KL展开3.4 宽平稳非周期性随机过程的KL展开与谱表示4. 谱表示与功率谱密度的联系4.1 从谱表示到功率谱密度4.2 从谱表示到功率谱密度的线性响应5. 基于PSWF与谱表示进行谱估计5.1 基于谱表示进行谱估计5.2 基本方程的求解5.2.1 线性方程的求解5.2.2 线性积分方程的求
2021-12-02 18:48:31 992 1
原创 【现代信号处理】 15 - 谱分析基础和周期图谱分析
谱分析基础和周期图谱估计文章目录谱分析基础和周期图谱估计1. 什么是谱2. 确定信号的频谱2.1 周期信号的频谱2.2 非周期信号的频谱3. 随机信号的谱3.1 随机信号做傅里叶分析的困难3.2 功率谱密度的物理和数学表示形式3.2.1 功率谱密度的物理表示3.2.2 功率谱密度的数学表示3.3 功率谱密度的量纲3.4 功率谱密度与线性变换3.5 小结4. 随机信号的谱估计5 周期图估计5.1 周期图的定义5.2 周期图的求解5.3 周期图估计与离散时间的功率谱之间的比较5.3.1 概述5.3.2 周期图
2021-12-02 18:45:03 3841
原创 【现代信号处理】 14 - NLMS扩展
NLMS扩展文章目录NLMS扩展1. 概述2.多角度解读NLMS2.1 高年级考试考低年级的题目的角度1.2 高年级考试和低年级考试分数拉开差距的角度2.3 从预测的角度2.4 引入对角加载的LMS3. NLMS的变种3.1 Generalized NLMS3.1.1 最优化条件解法3.1.2 伪逆解法3.1.3 引入对角加载项3.1.4 小结3.2 sgn-LMS4. Ensemble Learning(集成学习)4.1 Bagging4.2 Random forest4.3 Boosting1
2021-12-02 18:36:37 594
原创 【现代信号处理】 13 - 深入探讨最小二乘
深入探讨最小二乘文章目录深入探讨最小二乘1. 超定最小二乘1.1 概述1.2 投影角度分析1.3 SVD角度分析2. 欠定最小二乘2.1 概述2.2 投影角度分析2.3 SVD角度分析2.4 基于SVD透视欠定最小二乘2.5 应用:NLMS(Normalized LMS)3. QR分解与最小二乘3.1 概述3.2 基于QR分解透视超定最小二乘3.3 基于QR分解实现数值稳定的上三角化3.3.1 高斯消元中的不稳定性3.2.2 HouseHolder Reflection(1)反射(2)反射矩阵(3)上三角
2021-12-02 18:33:35 667
原创 【现代信号处理】 12 - 深入探讨奇异值分解
深入探讨奇异值分解文章目录深入探讨奇异值分解1. PCA、KL展开与SVD1.1 PCA公式证明1.2 Karhunen-Loeve展开1.3 基于SVD提高PCA计算精度1.3.1 优化数值计算稳定性1.3.2 降噪1.3.3 应用:Eigenface人脸识别算法2. 整体最小二乘(TLS)与SVD2.1 TLS思想2.2 需要解决的三个问题2.2.1 矩阵的求模2.2.2 低秩逼近2.2.3 TLS问题2.3 TLS小结1. PCA、KL展开与SVD1.1 PCA公式证明 我们考虑一个随机矢
2021-12-02 18:26:23 1472
原创 【现代信号处理】 11 -递归最小二乘
递归最小二乘 Recursive Least Square(RLS)文章目录递归最小二乘 Recursive Least Square(RLS)1. 问题引入1.1 LMS自适应滤波回顾2. 递归最小二乘2.1 LMS的缺陷与递归最小二乘模型建立2.2 矩阵求逆公式2.2.1 两个重要的中间式2.2.2 求逆公式2.3 递归最小二乘的自适应形式2.3.1 φ(n)的递推2.3.2 Z(n)的递推2.3.3 ω~n~的递推公式与Kalman Filter3. SVD 奇异值分解3.1 数学表示3.2 证明4
2021-12-02 18:21:49 880
原创 【现代信号处理】 10 - 自适应应用与LMS变种
自适应应用与LMS变种文章目录自适应应用与LMS变种1. 自适应应用的基本框架2. 自适应滤波与机器学习3. 自适应思想的应用3.1 预测3.2 系统辨识3.3 逆滤波3.4 干扰消除4. LMS的变种4.1 从步长角度考虑的变种4.1.1 步长的重要性4.1.2 归一化LMS4.1.2.1 概述4.1.2.2 感性理解4.1.2.3 公式证明4.1.3 线性平滑LMS4.1.4 非线性平滑LMS4.2 从效率角度考虑的变种4.2.1 考量效率的必要性4.2.2 sign LMS4.2.3 double
2021-12-02 18:13:13 1829 2
原创 【现代信号处理】09 - 自适应与LMS
自适应 Adaptive文章目录自适应 Adaptive1. 最小二乘的两个难题1.1 概述1.2 Complexity of Objective Function1.2.1 最速下降法1.2.2 牛顿法1.3 Non-Stationary Environment2. 最小均方自适应滤波器LMS2.1 问题引入2.2 LMS2.2.1 模型建立2.2.2 LMS细节剖析2.3 LMS与学习曲线2.3.1 学习曲线的建立2.3.2 估计系数误差的递推2.3.3 估计目标误差的递推3. 小结1. 最小二乘的
2021-09-16 14:40:40 593
原创 【现代信号处理】08 - Kernal Method
Kernal Method文章目录Kernal Method1. 问题引入2. 分类问题求解思路2.1 朴素求解方法2.2 支持向量机 SVM2.2.1 朴素法存在的问题2.2.2 计算点到平面的距离2.2.3 超平面优化3. Kernal3.1 非线性分类问题3.2 核化 kernalization3.3 核化需要关注的两个问题3.3.1 如何选择kernal3.3.2 kernalization的条件3.4 kernalization的例子3.4.1 线性回归3.4.2 岭回归3.4.3 PCA与KP
2021-09-14 15:30:41 287
原创 【现代信号处理】 07 - 正则化
正则化 Regularization文章目录正则化 Regularization1. 问题引入1.1 拟合的准确性和过拟合1.2 Bias-Variance Trade-off1.3 正则化引入2. 吉洪诺夫正则化2.1 模型建立2.2 对λ意义的探索2.3 奇异值分解与吉洪诺夫正则化2.3.1 奇异值分解2.3.2 吉洪诺夫正则化分析2.3.2.1 公式变形2.3.2.2 没有λ的情况2.3.2.3 有λ的情况3. L1正则化3.1 L1正则化和L2正则化的比较3.2 L1正则化的求解3.2.1 目标函
2021-09-09 10:51:12 768
原创 【现代信号处理】 06 - 卡尔曼滤波
卡尔曼滤波文章目录卡尔曼滤波1. 问题引入2. Kalman Filter2.1 模型建立--状态空间2.2 处理流程--预测校正2.3 求解2.3.1 预测2.3.2 校正2.3.3 计算卡尔曼增益2.3.4 计算协方差矩阵2.3.5 卡尔曼滤波完整方程式3. 举例1. 问题引入 我们研究的问题一般都是从观测数据入手。我们观测的对象是一组随机变量,我们需要用这组随机变量与估计另外一个随机变量Observation:(Z1,...,Zn)−>YObservation:(Z_1,...,Z_
2021-09-08 08:18:07 1216
原创 【ESP32-IDF】03-2 系统-系统时间
系统时间文章目录系统时间1. 概述2. 网络时间校正2.1 SNTP概述2.2 NTP时间戳2.3 通过SNTP进行系统时间校正2.3.1 思路2.3.2 库函数2.3.3 举例3. 获取系统时间3.1 时钟源3.2时间库3.2.1 数据类型(1) time_t(2) timeval(3) tm3.2.2 操作函数(1) time(2) gmtime()(3) localtime()(4) localtime与gmtime的区别(5) localtime_r()和gmtime_r()(6) asctime
2021-09-05 16:42:42 16182 3
原创 【现代信号处理】 05 - 递推与线性预测
递推与线性预测 Recursive Linear Prediction文章目录递推与线性预测 Recursive Linear Prediction1. 线性预测引入2. 线性预测与LPC编码3. 递归与线性预测求解3.1 问题分析3.2 Toeplitz矩阵3.2.1 结构3.2.2 性质3.2.3 证明3.3 方程求解3.3.1 递推思路3.3.2 寻找递推关系3.3.2.1 augmented normal equation3.3.2.2 n阶矩阵补全(n+1)阶矩阵3.3.2.3 (n+1)阶矩阵
2021-09-03 09:52:00 423
原创 【现代信号处理】 04 - 正交化与维纳滤波
正交化文章目录正交化正交化1. 线性估计与正交性之间的联系1.1 相关运算的本质1.2 几何意义下的线性估计1.2.1 单变量估计1.2.2 多变量估计1.3 正交性原理1.3.1 从正交性到最优性1.3.2 从最优性到正交性2. 利用正交性做线性估计2.1 Wiener-Hopf 方程2.2 应用2.2.1 离散随机变量做线性估计2.2.1.1 模型建立2.2.1.2 Wiener-Hopf 方程求解2.2.2 连续时间变量的线性估计2.2.2.1 模型建立2.2.2.2 Wiener-Hopf 方程求
2021-09-01 11:42:25 1087 2
原创 【现代信号处理】 03 - 线性估计 BLUE
线性估计文章目录线性估计1. 问题引入2. 问题求解2.1 线性拟合的方法进行参数求解2.1.1 目标函数的确立2.1.2 梯度的性质2.1.3 目标函数的求解2.2 最小方差无偏估计进行参数求解2.3 最优线性无偏估计进行参数求解2.3.1 标量的最优线性无偏估计 BLUE2.3.1.1 问题阐述2.3.1.2 BLUE与MVUE区别2.3.1.3 参数求解2.3.1.4 噪声对估计结果的影响(1)假设噪声的协方差矩阵是 σ^2I(2)假设噪声的协方差矩阵是 diag(σ~1~^2^,...,σ~n~^
2021-08-26 16:32:58 871 2
原创 【现代信号处理】02 -最小方差无偏估计 MVUE
最小方差无偏估计 MVUE文章目录最小方差无偏估计 MVUE1. 统计信号处理概述2. 信号处理举例2.1 问题描述2.2 处理方法2.3 处理原理2.3.1 系统建模2.3.2 处理分析2.3.2.1 方差2.3.2.2 均值2.3.3 更多次的加权平均3. 信号处理方法的评估与优化3.1 如何判断一个处理方法是好的3.1.1 参数化模型3.1.2 损失函数3.1.3 小结3.2 信号处理的最优性3.2.1 均方误差评估3.2.2 方差与偏差3.2.3 Variance Bias Tradeoff3.2
2021-08-26 16:20:23 1912
原创 【现代信号处理】01 -概率论与随机过程回顾
概率论与随机过程回顾文章目录概率论与随机过程回顾1. 统计模型的相关概念1.1 统计实验(不确定性)1.2 样本点1.3 样本空间Ω1.4 概率1.5.统计模型是先验的2. 概率和统计的差异2.1 联系2.2 差异2.3.1 概率和统计问题的三要素2.3.1.1 model-模型2.3.1.2 data-数据2.3.1.3 decision-决策2.3.2 关系图3. 样本空间的重要性3.1 贝朗特悖论3.1.1 解法一3.1.2 解法二3.1.3 解法三3.2 结论4.概率相关的概念4.1 随机变量4.
2021-08-26 16:02:57 992 2
原创 【ESP32-IDF】05-5 WIFI-MQTT高级内容
mqtt高级内容文章目录mqtt高级内容mqtt高级内容1. Qos服务质量等级1.1 什么是Qos1.2 Qos服务质量级别1.2.1 Qos=01.2.2 Qos=11.2.3 Qos=21.3 如何发送Qos>0 的数据1.3.1 发送Qos=1的数据1.3.2 发送Qos=2的数据1.4 服务质量降级2. 保留消息2.1 什么是保留消息2.2 如果修改保留消息2.3 如何删除保留消息2.4 保留消息报文2.5 保留消息的用途3. 心跳机制3.1 心跳机制是什么3.2 机制4. mqtt遗嘱4
2021-08-12 15:13:06 835
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人