svm 自我入门

本文从二分类问题出发,探讨支持向量机(SVM)的损失函数、拉格朗日乘子法、SMO优化算法以及软间隔概念。通过解析损失函数,介绍了支持向量的重要性,并利用拉格朗日乘子法转换问题以求解对偶问题。接着,详细解释了SMO算法如何用于求解α参数。最后,讨论了在面对非线性可分数据时引入软间隔的概念,以避免过拟合。
摘要由CSDN通过智能技术生成

为了简便,我们从二分类问题开始。

损失函数

svm-plane

为了将绿色方块的点和红色圆圈的点分开,我们需要找到超平面(在二维空间中是线,三维是平面)。在上图中,直觉告诉我们, B1 B 1 的线更加好,因为它对训练样本局部扰动的“容忍”性最好。

我们可以用以下的线性方程组描述 B1 B 1

wTx+b=0 w T x + b = 0

其中 w w 就是该超平面的法向量,关于这点,我们可以任取在该超平面上的两个点 x1,x2 x 1 , x 2 ,减一下得到 wT(x1x2)=0 w T ( x 1 − x 2 ) = 0 ,那么对于 x1,x2 x 1 , x 2 所决定的直线, w w 都与它垂直,所以它就是法向量。

那么任意点到超平面的距离也就可以写成:

r = | w T x + b | | | w | |

关于这点,我们可以这么想,任取 B1 B 1 ​ 上任意一点 x' x' ​ (过渡的中间变量),那么对于任意一点 x x ​ 到超平面的距离为 xx x − x ′ ​ 在法向量 w w ​ 上的投影长度:
r=|wT(xx')|||w||=|wTx+b|||w|| r = | w T ( x − x' ) | | | w | | = | w T x + b | | | w | |

那么对于一个分类器 y=wTx+b y = w T x + b ,对一个样本 xi x i 我们可以令:

{ wTx+b+1,yi=+1wTx+b1,yi=1 { w T x + b ≥ + 1 , y i = + 1 w T x + b ≤ − 1 , y i = − 1

我们可以通过成倍的改变 w,b w , b ​ 来改变不等式右边的值,这里固定为1便于后面计算。

那几个让等号成立的点被称为支持向量,也就是图中的 b11 b 11

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值