洛谷P1579-(哥德巴赫猜想)

本文介绍了一个程序设计挑战,即验证哥德巴赫猜想,该猜想指出所有大于9的奇数均可由三个质数相加得到。文章提供了一种算法实现思路,包括直接检查n-4是否为质数的特殊情况,以及使用双重循环遍历所有可能的质数组合。
摘要由CSDN通过智能技术生成

题目背景
1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:任何一个大于9的奇数都可以表示成3个质数之和。质数是指除了1和本身之外没有其他约数的数,如2和11都是质数,而6不是质数,因为6除了约数1和6之外还有约数2和3。需要特别说明的是1不是质数。

这就是哥德巴赫猜想。欧拉在回信中说,他相信这个猜想是正确的,但他不能证明。

从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。

题目描述
现在请你编一个程序验证哥德巴赫猜想。

先给出一个奇数n,要求输出3个质数,这3个质数之和等于输入的奇数。

输入格式
仅有一行,包含一个正奇数n,其中9<n<20000

输出格式
仅有一行,输出3个质数,这3个质数之和等于输入的奇数。相邻两个质数之间用一个空格隔开,最后一个质数后面没有空格。如果表示方法不唯一,请输出第一个质数最小的方案,如果第一个质数最小的方案不唯一,请输出第一个质数最小的同时,第二个质数最小的方案。

输入输出样例
输入#1
2009
输出*1
3 3 2003
思路
2是最小的质数,如果n能拆分成 2 2 n-4的形式,那么就是适合的结果,只需判断n-4是否为质数即可
上边条件不符合,就利用双重循环,使第一个数 i ,第二个数 j 为质数,然后判断第三个数(n-i-j)是否为质数即可。

#include<iostream>
#include<math.h>
using namespace std;
int judege_prime(int n)
{
	int i, t = 0;
	if(n == 1) return 0;
	for(i = 2; i <= sqrt(n); i++)
	{
		if(n % i==0)
		{
			return 0;
		}
	}
	 
	return 1;
}
int main()
{
	int n;
	cin >> n;
	if(judege_prime(n-4))
	{
		cout << "2 2" << " " << n-4;
		return 0;
	}
	
	for(int i = 3; i < n; i++)
	{
		if(judege_prime(i) && (i % 2 )== 1)
		{
		
			for(int j = i; j < n; j++)
			{
		 
			if(judege_prime(j)&&(j%2)==1)
			{
				if(judege_prime(n-i-j))
				{
					cout << i << " " << j << " " << n-i-j;
					return 0;
				}
			}
		
			}
		}
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值