题目背景
1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:任何一个大于9的奇数都可以表示成3个质数之和。质数是指除了1和本身之外没有其他约数的数,如2和11都是质数,而6不是质数,因为6除了约数1和6之外还有约数2和3。需要特别说明的是1不是质数。
这就是哥德巴赫猜想。欧拉在回信中说,他相信这个猜想是正确的,但他不能证明。
从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。
题目描述
现在请你编一个程序验证哥德巴赫猜想。
先给出一个奇数n,要求输出3个质数,这3个质数之和等于输入的奇数。
输入格式
仅有一行,包含一个正奇数n,其中9<n<20000
输出格式
仅有一行,输出3个质数,这3个质数之和等于输入的奇数。相邻两个质数之间用一个空格隔开,最后一个质数后面没有空格。如果表示方法不唯一,请输出第一个质数最小的方案,如果第一个质数最小的方案不唯一,请输出第一个质数最小的同时,第二个质数最小的方案。
输入输出样例
输入#1
2009
输出*1
3 3 2003
思路
① 2是最小的质数,如果n能拆分成 2 2 n-4的形式,那么就是适合的结果,只需判断n-4是否为质数即可
②上边条件不符合,就利用双重循环,使第一个数 i ,第二个数 j 为质数,然后判断第三个数(n-i-j)是否为质数即可。
#include<iostream>
#include<math.h>
using namespace std;
int judege_prime(int n)
{
int i, t = 0;
if(n == 1) return 0;
for(i = 2; i <= sqrt(n); i++)
{
if(n % i==0)
{
return 0;
}
}
return 1;
}
int main()
{
int n;
cin >> n;
if(judege_prime(n-4))
{
cout << "2 2" << " " << n-4;
return 0;
}
for(int i = 3; i < n; i++)
{
if(judege_prime(i) && (i % 2 )== 1)
{
for(int j = i; j < n; j++)
{
if(judege_prime(j)&&(j%2)==1)
{
if(judege_prime(n-i-j))
{
cout << i << " " << j << " " << n-i-j;
return 0;
}
}
}
}
}
}