无向图求双连通分量以及桥

<code>
void pbc_dfs(int u, int parent) {//求双连通分量中的边
    dfn[u] = low[u] = dfn_now++;
    foreach e in adjacent list [u] {
        v = e->v;
        if (v != parent && dfn[v] < dfn[u]) {
            stack.push(Edge(u, v));
            if (0 != dfn[v])
low[u] = min(low[u], dfn[v]);
            else {
                pbc_dfs(v, u);
                low[u] = min(low[u], low[v]);
                if (low[v] >= dfn[u]) { // u is a cut point //此处会枚举所有的双连通分量
                    do {
                        Edge edg = stack.pop();
                        ...(some operation)
                    } while(edg is not uv);
                    ++component_id;
                }
            }
        }
    }
}


</code>





<code>
int dfn[M],low[M],index;
void tarjan(int u,int parent){
	dfn[u]=low[u]=index++;//应当小心index,可能会出现报错的情况
	for(int i=head[u];i!=-1;i=edge[i].next){
		int v=edge[i].v;
		if(dfn[v]!=0&&v!=pa){//如果v为u的父亲的话,那么就没意思了。可以逻辑一下
			low[u]=min(low[u],dfn[v]);
		}else if(dfn[v]==0){
			tarjan(v,u);
			low[u]=min(low[v],low[u]);
			if(dfn[u]<low[v]){//cout<<" == "<<u<<v<<endl;
				match(u,v);
			}
		}
	}
}

void solve(int n){
	memset(dfn,0,sizeof(dfn));
	memset(fa,-1,sizeof(fa));
	index=1;
	for(int i=1;i<=n;i++){
		if(dfn[i]==0){//可能整张图本身就不连通,而是由多个联通块组成
			tarjan(i,-1);
		}
	}
}


</code>



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值