多攻击者单元格抑制问题解析
1. 线性规划与约束条件
在考虑一个敏感单元格和一个攻击者的情况下,涉及16个变量 (y_i)。一般而言,每次迭代要解决的线性规划数量是敏感单元格数量乘以攻击者数量的两倍。
当最大化 (y_{23}) 时,最优值为22,但不满足上保护要求。此时,可考虑一个最优对偶解,例如:
- (\alpha_{11} = +1)(与 (y_{11} \leq 20) 相关的对偶变量)
- (\alpha_{12} = +1)(与 (y_{12} \leq 50) 相关的对偶变量)
- (\alpha_{43} = +1)(与 (y_{43} \leq 44) 相关的对偶变量)
- (\beta_{14} = +1)(与 (y_{14} \geq 80) 相关的对偶变量)
- (\beta_{33} = +1)(与 (y_{33} \geq 12) 相关的对偶变量)
- (\gamma_1 = -1)(与 (y_{11} + y_{12} + y_{13} - y_{14} = 0) 相关的对偶变量)
- (\gamma_7 = +1)(与 (y_{23} + y_{13} + y_{33} - y_{43} = 0) 相关的对偶变量)
由此可得一个违反的约束条件为:
(20x_{11} + 50x_{12} + 44x_{43} + 80x_{14} + 12x_{33} \geq 5)
相关的强化约束条件为:
(x_{11} + x_{12} + x_{43} + x_{14} + x_{33} \geq 1)
由于存在不同的最优对偶解,分离过程
订阅专栏 解锁全文
39

被折叠的 条评论
为什么被折叠?



