6、多攻击者单元格抑制问题解析

多攻击者单元格抑制问题解析

1. 线性规划与约束条件

在考虑一个敏感单元格和一个攻击者的情况下,涉及16个变量 (y_i)。一般而言,每次迭代要解决的线性规划数量是敏感单元格数量乘以攻击者数量的两倍。

当最大化 (y_{23}) 时,最优值为22,但不满足上保护要求。此时,可考虑一个最优对偶解,例如:
- (\alpha_{11} = +1)(与 (y_{11} \leq 20) 相关的对偶变量)
- (\alpha_{12} = +1)(与 (y_{12} \leq 50) 相关的对偶变量)
- (\alpha_{43} = +1)(与 (y_{43} \leq 44) 相关的对偶变量)
- (\beta_{14} = +1)(与 (y_{14} \geq 80) 相关的对偶变量)
- (\beta_{33} = +1)(与 (y_{33} \geq 12) 相关的对偶变量)
- (\gamma_1 = -1)(与 (y_{11} + y_{12} + y_{13} - y_{14} = 0) 相关的对偶变量)
- (\gamma_7 = +1)(与 (y_{23} + y_{13} + y_{33} - y_{43} = 0) 相关的对偶变量)

由此可得一个违反的约束条件为:
(20x_{11} + 50x_{12} + 44x_{43} + 80x_{14} + 12x_{33} \geq 5)
相关的强化约束条件为:
(x_{11} + x_{12} + x_{43} + x_{14} + x_{33} \geq 1)

由于存在不同的最优对偶解,分离过程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值