2^n+2>n^2 经验证n=1,2,3均成立(4>1,6>4,10>9) 设n=k(k>=3成立) 则n=k+1时 左边=2^(k+1)+2=2*(2^k+2)-2 >2k^2-2=k^2+k^2-2 右边=(k+1)^2=k^2+2k+1 因为k^2-2-2k-1=k^2-2k-3=(k-3)(k+1) 因此k>=3时2k^2-2>=(k+1)^2 综上n=k+1时 左边>右边,结论成立 综上,对所有正整数n,2^n+2>n^2,同理可证:2^n+2>n^2+2,即2^n>n^2。
试比较2的n次方加2与n平方的大小。 (n属于N*). 用数学规纳发证明
最新推荐文章于 2023-11-14 09:41:03 发布