试比较2的n次方加2与n平方的大小。 (n属于N*). 用数学规纳发证明

本文通过数学归纳法证明了对于所有的正整数n,不等式2^n+2>n^2成立,并进一步得出2^n>n^2的结论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2^n+2>n^2
经验证n=1,2,3均成立(4>1,6>4,10>9)
设n=k(k>=3成立)
则n=k+1时
左边=2^(k+1)+2=2*(2^k+2)-2
>2k^2-2=k^2+k^2-2
右边=(k+1)^2=k^2+2k+1
因为k^2-2-2k-1=k^2-2k-3=(k-3)(k+1)
因此k>=3时2k^2-2>=(k+1)^2
综上n=k+1时 左边>右边,结论成立

综上,对所有正整数n,2^n+2>n^2,同理可证:2^n+2>n^2+2,即2^n>n^2。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值