人脸检测--RetinaFace

论文:RetinaFace: Single-stage Dense Face Localisation in the Wild

官方代码:https://github.com/deepinsight/insightface/tree/master/detection/retinaface,是用 Mxnet 实现的。

pytorch版本代码:https://github.com/biubug6/Pytorch_Retinaface

总结:

(1)不仅实现了人脸检测,还实现了人脸关键点检测;

(2)是一个 anchor-base 的方法;

摘要:

RetinaFace 利用联合超监督和自我监督多任务学习的优势,对不同尺度的人脸进行像素级的人脸定位;

主要贡献:

(1)我们在WIDER FACE数据集上手动标注了5个面部标志,并观察到在这个额外监督信号的帮助下,hard脸检测的显著改进。

(2)我们进一步添加一个自监督网格解码器分支,以预测像素级三维形状面信息与现有的监督分支并行。

介绍:

主要贡献:

(1)单阶段方法,像素级的人脸定位,该算法采用多任务学习策略,同时预测人脸评分、人脸框、五个面部地标以及每个人脸像素的三维位置和对应关系;

(2)在WIDER FACE数据集的 hard子集中的AP值,胜过双阶段的方法;

(3)在IJB-C数据集上,RetinaFace能帮助提高ArcFace的精度,这表明更好的人脸检测方法能提高人脸识别的进度;

(4)提供了一个轻量化的人脸骨干网络,可以在CPU上实时运行。

(5)已经发布了额外的注释和代码,以促进未来的研究

网络结构:

 其中,context modules 不是很懂。

损失函数:

 一共有4个相关的损失函数,分别为分类损失,box回归损失,面部关键点回归损失,稠密回归损失。

分类损失:使用的是二进制的softmax损失

box回归损失:使用的是smooth-L1损失

训练细节:

实验:

代码结果:

官方版本:

只能训练,但是不能评估,不知道怎么运行评估代码

Pytorch_Retinaface版本:

==================== Results ====================
Easy   Val AP: 0.9070763216528187
Medium Val AP: 0.8816503588820671
Hard   Val AP: 0.7382727979487236
=================================================

// 评估FDDB错误,原因是 eval_fddb 不能下载。


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值