目录
🚀 MCP 智能体任务自我优化、失败恢复与策略演化系统设计
到目前为止,我们的系统已具备:
✅ 动态角色与工具学习
✅ Agent 自治协作与投票
✅ 动态推理链与依赖任务调度
✅ 多轮对话与上下文记忆
✅ 生命周期管理
✅ 基础治理机制
但所有任务的执行策略仍然是:
-
人为设计
-
固定流程
-
出错时人工介入
真正的智能体系统应该具备:
遇到任务瓶颈或失败 → 自动调整策略 → 优化执行路径 → 不断进化
🌟 自我优化核心能力
能力 | 说明 |
---|---|
执行监控 | 记录各任务执行结果与耗时 |
失败检测 | 识别失败任务与原因 |
策略调整 | 尝试不同执行路径或分工 |
经验积累 | 记忆哪些策略效果最佳 |
策略演化 | 根据经验自动选择最优策略 |
🛠️ 1. 执行监控与性能日志
每个任务节点增加性能记录:
class TaskNode:
...
self.execution_time = None
self.success = None
self.error = None
记录执行:
import time
start = time.time()
try:
result = agent.execute(task)
task.success = True
task.result = result
except Exception as e:
task.success = False
task.error = str(e)
finally:
task.execution_time = time.time() - start
🛠️ 2. 失败检测与恢复
调度器在任务失败时:
if not task.success:
print(f"任务 {task.task_id} 执行失败:{task.error}")
recovery_strategy(task)
简单恢复策略:
def recovery_strategy(task):
# 重试
for attempt in range(3):
try:
result = agent.execute(task)
task.success = True
task.result = result
print(f"重试第 {attempt+1} 次成功")
break
except:
continue
if not task.success:
# 失败后尝试换其他Agent或工具
alternate_agent = find_alternate_agent(task)
if alternate_agent:
result = alternate_agent.execute(task)
task.success = True
task.result = result
🛠️ 3. 策略经验积累(Strategy Memory)
每次任务执行后,更新经验:
class StrategyMemory:
def __init__(self):
self.records = {} # task_type -> [(agent, success_rate, avg_time)]
def update(self, task_type, agent_name, success, exec_time):
if task_type not in self.records:
self.records[task_type] = []
self.records[task_type].append((agent_name, success, exec_time))
🛠️ 4. 策略演化(Policy Evolution)
当遇到相同类型任务时:
def select_best_agent(task_type):
strategies = strategy_memory.records.get(task_type, [])
if not strategies:
return default_agent
# 选择成功率最高且耗时最低的Agent
best = sorted(strategies, key=lambda x: (-x[1], x[2]))[0]
return best[0] # agent_name
调度器将优先分配经验最优的Agent!
🛠️ 5. 示例:自我优化执行流程
轮次1:
- FileAgent 执行读取文件,耗时10s,成功
- SummaryAgent 执行总结,耗时15s,成功
轮次2:
- FileAgent 执行读取文件,耗时9s,成功
- SummaryAgent 执行总结,耗时14s,失败
- 重试 → 成功
轮次3:
- 系统选择 FileAgent(平均最快)
- 系统尝试替换 SummaryAgent(失败率较高)
策略记忆更新,系统逐步优化 Agent 分配与任务顺序!
🧠 技术总结
本篇,我们实现了:
✅ 任务执行监控与性能记录
✅ 失败检测与自动恢复
✅ 策略经验积累(成功率与效率)
✅ 执行策略演化(Policy Evolution)
✅ 智能体自主优化执行路径
你的 MCP 智能体系统,已经拥有:
自主理解 → 自主协作 → 自主学习 → 自主治理 → 自主优化 的完整闭环!
🎯 下一步挑战
下一篇,我们将挑战 MCP 智能体系统的最终形态:
-
系统级性能监控(Performance Dashboard)
-
弹性扩展(Elastic Scaling)
-
任务优先级与资源管理(Task Prioritization & Resource Management)
-
大规模 Agent 群体的动态调度与治理
打造真正的:
弹性、自主、自治、可持续演进的 AI Agent 生态系统!