使用 A100 显卡的 MIG 技术在 Kubernetes 中实现 Jupyter 多实例 GPU 分配

目录

使用 A100 显卡的 MIG 技术在 Kubernetes 中实现 Jupyter 多实例 GPU 分配

摘要:

正文:

一、背景与挑战

二、MIG 简介与划分策略

三、操作步骤

1. 启用 MIG 并划分资源

2. 部署 NVIDIA Device Plugin

四、Jupyter Pod 配置示例

五、调度与扩展建议

六、总结


使用 A100 显卡的 MIG 技术在 Kubernetes 中实现 Jupyter 多实例 GPU 分配

摘要:

在多用户共享 GPU 资源的 AI 开发平台中,NVIDIA A100 显卡凭借强大的计算力和对 MIG(Multi-Instance GPU)技术的支持,为 Kubernetes 集群提供了高效、安全的资源隔离方案。本文将详细讲解如何基于 A100-80G 显卡在 Kubernetes 中启用 MIG 模式,并结合 Jupyter Notebook 多实例部署,实现细粒度的 GPU 资源分配与管理。


正文:

一、背景与挑战

在 AI 开发场景中,一个显著难题是如何让多个用户高效地共享 GPU。传统的 nvidia.com/gpu: 1 模式导致每个容器独占整卡,资源浪费严重,尤其是在使用 NVIDIA A100 这样的大显存 GPU 时尤为明显。

为解决这一问题,NVIDIA 推出了 MIG 技术,将单卡划分为多个相互隔离的 GPU 子实例,从而支持多任务并行运行。结合 Kubernetes 的调度能力,我们可以实现多 Jupyter 实例独占各自的 GPU 子资源


二、MIG 简介与划分策略

A100 80G 显卡支持将一张卡划分为多个不同规格的 MIG 实例。以下是一些典型的划分方案:

MIG 实例类型显存最大实例数K8s 资源名
1g.10gb10GB7/卡nvidia.com/mig-1g.10gb
2g.20gb20GB3/卡nvidia.com/mig-2g.20gb
3g.40gb40GB2/卡nvidia.com/mig-3g.40gb

针对多用户轻量使用场景,我们推荐每张卡划分成 7 个 1g.10gb 实例,2 张卡共 14 个 MIG 实例。


三、操作步骤

1. 启用 MIG 并划分资源

# 启用 MIG 模式
sudo nvidia-smi -i 0 --mig-enable
sudo nvidia-smi -i 1 --mig-enable

# 每张卡创建 7 个 1g.10gb 实例
sudo nvidia-smi mig -cgi 0,0,0,0,0,0,0 -i 0 -C
sudo nvidia-smi mig -cgi 0,0,0,0,0,0,0 -i 1 -C

2. 部署 NVIDIA Device Plugin

kubectl apply -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/main/nvidia-device-plugin.yml

安装后,Node 节点上将自动注册 nvidia.com/mig-1g.10gb: 14 资源。


四、Jupyter Pod 配置示例

每个用户的 Jupyter 实例可以通过以下方式绑定一个 MIG 实例:

resources:
  limits:
    nvidia.com/mig-1g.10gb: 1

❗注意:MIG 实例为硬件隔离资源,每个 Pod 只能绑定一个 MIG 实例,不能配置为 : 2: 5


五、调度与扩展建议

  • 为 GPU 节点打上标签,配合 nodeSelector 控制调度位置;

  • 使用 Helm 或 Argo 创建多个 Jupyter 实例;

  • 对于大模型训练,建议禁用 MIG 模式,使用 nvidia.com/gpu: 1 方式整卡调度


六、总结

借助 NVIDIA A100 显卡的 MIG 技术,我们可以轻松在 Kubernetes 中实现高性能 GPU 资源的多用户精细化分配。尤其在 Jupyter Notebook 场景中,一张显卡即可支持多个并行实例,大幅提高资源利用率,降低运维成本。该方案在 AI 教学平台、企业多租户建模环境中具有广泛应用前景。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值