智能农业控制系统能根据实时的农田环境数据、农作物生长情况,借助于数据挖掘技术、图像处理技术,结合专家决策库给出决策规则,自动控制农田设备,调节农田环境参数,控制农作物生长情况。智能农业控制系统如图所示。
图X: 智能农业控制系统
1)基于图像处理技术的农作物生长阶段判断系统
该系统利用图像处理技术,对农作物生长不同阶段的不同图像进行特征提取,建立农作物生长阶段模型,对农作物的不同生长阶段进行识别。比如,基于植被系数建立水稻生长阶段模型,通过对水稻生长阶段的图像进行预处理和特征提取,实现对水稻不同生长阶段的自动判断。
2)基于图像处理技术的病虫害自动诊断和防治系统
农业专家可以依据农作物长势、叶片特征等对农作物病虫害进行诊断,根据这一原理,我们可以借助图像处理技术提取农作物生病或长虫时的长势情况、叶片颜色、叶片形状等特征,结合专家经验,建立农作物病虫害诊断规则库。通过对农作物图像进行特征提取,依据病虫害诊断规则库,实现病虫害的自动诊断,并针对农作物不同的病虫害给出针对性的防治措施。该系统不仅能实现病虫害的提前发现,尽早防治,而且不需要农民掌握病虫害防治知识,节约大量的人力成本。
3)基于数据和知识的专家决策系统
农业专家能根据农田环境参数和农作物长势情况提出病虫害防治、灌溉、施肥等指导性建议,但这依赖于专业领域知识,需要投入大量人力,对农民培训耗费大量的成本,农民不容易掌握,而且人工不能及早发现问题,具有滞后性。借助于计算机和数据处理技术,充分利用数据和专业领域知识构建专家决策系统,可以代替农业专家对农作生产进行指导。专家决策系统能充分利用数据和知识,能及早发现问题给出控制策略。
借助于传感器网络采集农田土壤温度、湿度、光照强度等环境参数数据,建立包含环境参数数据和农作物不同阶段的长势(生长情况)、产量、果实品质等数据的数据库,利用大数据处理技术和数据挖掘技术对这些长年累月收集的数据进行处理,结合专家经验知识,分析不同属性间的关联关系,利用数据融合技术,建立不同属性间的关联规则模型。
数据库中数据属性如下: [生长阶段 温湿度、光照强度等环境参数 土壤营养成分含量 生长情况 品质 产量]
生长情况包括&#