科研
文章平均质量分 69
52Tiramisu
这个作者很懒,什么都没留下…
展开
-
[SGDiff] A Style Guided Diffusion model for fashion synthesis
①提出一个 风格引导的扩散模型(SGDiff),把 图像模态 与 预训练的t2i模型 组合起来。②提出一个 数据集 SG-Fashion。原创 2023-12-20 10:00:35 · 499 阅读 · 0 评论 -
[SpliceViT]Splicing ViT Features for Semantic Appearance Transfer
goal:generate an image in which objects in a source structure image are “painted” with the visual appearance of their semantically related objects in a target appearance image.(生成一个图像,其中源结构图像中的对象被“绘制”为目标外观图像中与其语义相关的对象的视觉外观。原创 2023-12-16 14:54:44 · 1025 阅读 · 0 评论 -
InST论文复现
就到huggingface网站上面下载这个模型,放到服务器上面的某个位置,然后再改一下代码。原因:huggingface被科学了==原创 2023-12-05 14:34:39 · 756 阅读 · 0 评论 -
DiffFashion论文复现
重新卸载环境,然后安装,结果发现磁盘空间不够了= =,难以想象,服务器只有1T的硬盘。原创 2023-12-06 09:50:18 · 565 阅读 · 0 评论 -
[TI] [Textual Inversion] An image is worth an word
自己的理解:根据几个图像,找出来一个关键字可以代表它们,然后我们可以再用这个关键字去生成新的东西。提出关键字。原创 2023-09-18 20:45:34 · 266 阅读 · 0 评论 -
BLIP-Diffusion
BLIP-Diffusion 可以完成 主题驱动的多模态控制。怎么体现出来这个 多模态控制的呢?1.用 BLIP2里面的 multimodal control 输出 visual representation;2.设计 subject representation learning task 使得 SD使用这个 visual... 来生成 new subject renditions.2.有效的 fine-tune 使得速度提升了20倍;原创 2023-08-15 16:25:54 · 396 阅读 · 0 评论 -
UNet Model
【代码】UNet Model。原创 2023-08-10 22:37:05 · 204 阅读 · 0 评论 -
ControlNet
因为条件的feature map得是 64 \times 64 的,所以需要一个小网络 把条件图像(512 \times 512 \rightarrow 64\times 64)。零卷积就成为一种独特的连接层,以一种学习的方式从零逐步增长到优化参数。解释:ControlNet直接从输入数据中学到所必要的条件和特征,然后直接输出,中间不需要什么操作。学习方式,一端是输入数据、另一端是输出数据,让神经网络自己根据数据调节自己,而不需要人工干预。①许多特定任务的数据集比较小,需要稳定的神经网络,以防止过拟合;原创 2023-08-10 20:56:04 · 179 阅读 · 0 评论