题意:n个男孩,m个女孩,第i个男孩送出的最小糖果为b[i],送给m个女孩,第i个女孩收到的最小的糖果为g[i],且b[i],g[i],全部要取到,问送出的最少糖果
题解:明显可以贪心做。
先对b[i] 和g[i]进行排序,首先n个男孩肯定要送出b[i],可以求出此时最小的一个值∑b[i] * m 。同时所有的g[i]要取到,那么便遍历一遍g[i]-b[n-1],解释:首先要取最小,先满足min(b[i]) > max [g[i]) ,所以对最大的b[i]必然可以取n-1个g[i],如果g[0]!=b[n-1],那么最大的b[i]就要取自身的值,此时只要b[n-2]取即可。
AC代码
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<ll, ll> pii;
ll n, m, k, ans, mod=1e9+7;
ll g[101010], b[101010];
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(0);
ll i, j, temp=0;
cin>>n>>m;
for(i=0;i<n;i++)
cin>>b[i];
for(i=0;i<m;i++)
cin>>g[i];
sort(b, b+n);
sort(g, g+m);
if(b[n-1]>g[0])
{
cout<<"-1";
return 0;
}
for(i=0;i<n;i++)
ans+=b[i];
ans*=m;
for(i=1;i<m;i++) ans+=g[i]-b[n-1];
if(g[0]!=b[n-1]) ans+=g[0]-b[n-2];
cout<<ans;
}