决策树是机器学习算法吗?

决策树是机器学习中的有监督分类算法,通过构建树形结构来预测目标变量。本文介绍了决策树的工作原理,并通过一个实例展示了如何使用决策树进行分类。同时,讨论了信息熵在选择节点分裂标准中的作用。此外,还分享了人工智能学习资源,包括课程、论文、行业报告等,助力读者深入学习AI。
摘要由CSDN通过智能技术生成

机器学习有十大常用算法,最近几年,得益于数据量的上涨、运算力的提升,特别是机器学习新算法的出现,人工智能迎来了大爆发的时代。决策树是机器学习算法吗?本文帮你解答此问题。

决策树是机器学习算法吗?

决策树是机器学习算法。决策树,英文名为Decision Tree,是一种有监督分类算法。在决策树算法中,需要先构建一个树形结构,其中每个结点都代表某一特征值的一种结果,故命名为决策树。决策树是机器学习中的一个重要分类方法

原理:

首先看一个例子,根据一个人的年龄、信用等级、收入、是否是学生,来判断他是否会买电脑:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值