什么是图神经网络?图神经网络有什么用?

本文介绍了图神经网络(GNN)的基本概念,包括其定义、兴起原因以及广泛应用。GNN作为深度学习的重要组成部分,解决了传统模型处理非欧几里得结构数据的难题。GNN在异常检测、社交网络分析等领域展现出强大能力,并且能够进行数据的语义可视化。此外,文章还提供了丰富的人工智能学习资源,涵盖多个领域的课程、论文和行业报告。
摘要由CSDN通过智能技术生成

深度学习是近几年人工智能领域的核心技术,随着它的不断深入发展,才有了人工智能今天的崛起和落地应用。谈到深度学习,就不得不提图神经网络(GNN),毕竟图神经网络正是深度学习技术的根本和基础。下面我将用三分钟带你解读图神经网络,主要内容包括图神经网络的定义、兴起和用途。

什么是图神经网络?

1、图神经网络的定义

近些年来,图神经网络的兴起与用途成功推动了人工智能在模式识别和数据挖掘的研究。

GNN全名图神经网络,这里的G是是图(Graph)的意思,GNN之所以重要,是因为图很重要。图是计算机科学里的一种非常重要的数据结构,计算机科学有一门必修的基础课叫“离散数学”,听名字像是某一条数学分支,不过究竟“离散数学”的边界在哪里,现在还没有一个统一的定论。但有一个知识点,所有版本的《离散数学》教材都不会错过,那就是“图论”,讨论一种叫“图”的数据结构。而GNN里的“图”,正是指图论的“图”。

那么究竟什么是“图”?就两样,顶点(Vertex)和边(Edge)。所谓的顶点,就是网络拓扑图里面的节点,譬如网络拓扑图里的PC机、服务器和路由器等等,而所谓的边,就是连接这些网络节点的线。所以图的应用非常广,网络拓扑图就是一种非常典型的图结构。

2、图神经网络的兴起

图神经网络的出现实质上是一门新技术的兴起,那为什么要推出这款新技术呢?推出一款新技术,潜台词就是说原有技术存在不足,下面我们可以看看CNN和RNN存在的不足。说白了就是数据结构,模型是要喂数据的,这我们都知道。但现有的深度学习模型,无论是CNN,还是RNN,或者叫其他什么的,都对数据的数据结构有一个要求,必须都是欧几里得结构。长得方方正正的就是欧几里得结构,军训的阅兵方阵,横向纵向都是一个人紧挨着一个人,这就是典型的欧几里得结构。而图是非欧几里得结构,所以没有办法用传统的深度模型处理的。因此,研究人员开发了图神经网络。

3、图神经网络的用途

近几年,深度学习带来了人脸识别、语音助手以及机器翻译的成功应用。这三类场景的背后分别代表了三类数据:图像、语音和文本。深度学习在这三类场景中取得突破的关键是它背后的端对端学习机制。另外,业界认为大规模图神经网络是认知智能计算强有力的推理方法。图神经网络将深度神经网络从处理传统非结构化数据推广到更高层次的结构化数据。不仅如此,图还具有很强的语义可视化能力,这种优势被所有的 GNN 模型所共享。比如在异常交易账户识别的场景中,GNN 在将某个账户判断为异常账户之后,可以将该账户的局部子图可视化出来。

免费分享一些我整理的人工智能学习资料给大家,包括一些AI常用框架实战视频、图像识别、OpenCV、NLQ、机器学习、pytorch、计算机视觉、深度学习与神经网络等视频、课件源码、国内外知名精华资源、AI热门论文、行业报告等。

为了更好的系统学习AI,推荐大家收藏一份。

下面是部分截图,点击文末名片关注我的公众号【AI技术星球】发送暗号 321 领取(一定要发暗号 321)

一、人工智能课程及项目

二、国内外知名精华资源

三、人工智能论文合集

四、人工智能行业报告

学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。

点击下方名片,扫码关注【AI技术星球】发送暗号 321 免费领取文中资料。

图神经网络(Graph Neural Network,GNN)是一种基于图结构数据进行深度学习神经网络模型。它在学习过程中可以考虑节点之间的关系和图结构信息,能够有效地处理复杂的图数据,如社交网络、化学分子结构等。常见的图神经网络包括Graph Convolutional Networks(GCN)、Graph Attention Networks(GAT)等。 图神经网络可以应用于多种图数据处理任务,包括但不限于以下几类: 1. 节点分类(Node Classification):对图中的每个节点进行分类。 2. 边分类(Edge Classification):对图中的每个边进行分类。 3. 图分类(Graph Classification):对整张图进行分类。 4. 节点表征学习(Node Embedding):将每个节点映射到一个低维向量空间中,以便于后续的图结构分析和应用。 5. 图表征学习(Graph Embedding):将整张图映射到一个低维向量空间中,以便于后续的图结构分析和应用。 6. 图生成(Graph Generation):根据已有的图生成新的图结构。 7. 图匹配(Graph Matching):将两张图进行对齐或匹配。 GNN相较于传统的神经网络,具有以下几个优点: 1. 能够处理非欧几里得空间的数据:传统的神经网络只能处理欧几里得空间的数据,而GNN可以处理非欧几里得空间的数据,如图、网络等。 2. 能够考虑节点之间的关系:GNN在学习过程中可以考虑节点之间的关系和图结构信息,能够有效地处理复杂的图数据,如社交网络、化学分子结构等。 3. 具有较强的泛化能力:GNN可以通过学习图结构中的规律,对新的图数据进行泛化,具有较强的泛化能力。 4. 可以处理缺失数据:GNN能够处理缺失数据,因为图结构中的节点和边可以相互补充信息。 5. 可以处理异构数据:GNN能够处理异构数据,因为它可以对不同类型的节点和边进行不同的处理。 总之,GNN能够处理非欧几里得空间的数据,并且具有强大的泛化能力和处理复杂图数据的能力,可以应用于多个领域,如社交网络分析、推荐系统、药物发现等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值