什么是图神经网络?图神经网络有什么用?

深度学习是近几年人工智能领域的核心技术,随着它的不断深入发展,才有了人工智能今天的崛起和落地应用。谈到深度学习,就不得不提图神经网络(GNN),毕竟图神经网络正是深度学习技术的根本和基础。下面我将用三分钟带你解读图神经网络,主要内容包括图神经网络的定义、兴起和用途。

什么是图神经网络?

1、图神经网络的定义

近些年来,图神经网络的兴起与用途成功推动了人工智能在模式识别和数据挖掘的研究。

GNN全名图神经网络,这里的G是是图(Graph)的意思,GNN之所以重要,是因为图很重要。图是计算机科学里的一种非常重要的数据结构,计算机科学有一门必修的基础课叫“离散数学”,听名字像是某一条数学分支,不过究竟“离散数学”的边界在哪里,现在还没有一个统一的定论。但有一个知识点,所有版本的《离散数学》教材都不会错过,那就是“图论”,讨论一种叫“图”的数据结构。而GNN里的“图”,正是指图论的“图”。

那么究竟什么是“图”?就两样,顶点(Vertex)和边(Edge)。所谓的顶点&#x

神经网络(Graph Neural Network,GNN)是一种基于结构数据进行深度学习神经网络模型。它在学习过程中可以考虑节点之间的关系和结构信息,能够有效地处理复杂的数据,如社交网络、化学分子结构等。常见的神经网络包括Graph Convolutional Networks(GCN)、Graph Attention Networks(GAT)等。 神经网络可以应用于多种数据处理任务,包括但不限于以下几类: 1. 节点分类(Node Classification):对中的每个节点进行分类。 2. 边分类(Edge Classification):对中的每个边进行分类。 3. 分类(Graph Classification):对整张进行分类。 4. 节点表征学习(Node Embedding):将每个节点映射到一个低维向量空间中,以便于后续的结构分析和应用。 5. 表征学习(Graph Embedding):将整张映射到一个低维向量空间中,以便于后续的结构分析和应用。 6. 生成(Graph Generation):根据已有的生成新的结构。 7. 匹配(Graph Matching):将两张进行对齐或匹配。 GNN相较于传统的神经网络,具有以下几个优点: 1. 能够处理非欧几里得空间的数据:传统的神经网络只能处理欧几里得空间的数据,而GNN可以处理非欧几里得空间的数据,如、网络等。 2. 能够考虑节点之间的关系:GNN在学习过程中可以考虑节点之间的关系和结构信息,能够有效地处理复杂的数据,如社交网络、化学分子结构等。 3. 具有较强的泛化能力:GNN可以通过学习结构中的规律,对新的数据进行泛化,具有较强的泛化能力。 4. 可以处理缺失数据:GNN能够处理缺失数据,因为结构中的节点和边可以相互补充信息。 5. 可以处理异构数据:GNN能够处理异构数据,因为它可以对不同类型的节点和边进行不同的处理。 总之,GNN能够处理非欧几里得空间的数据,并且具有强大的泛化能力和处理复杂数据的能力,可以应用于多个领域,如社交网络分析、推荐系统、药物发现等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值