数据预处理、特征工程
二、特征工程
学习的b站上菜菜的课程。
特征工程将原始数据转换为更能代表预测模型的潜在问题的特征的过程,可以挑选最相关的特征,提取特征以及创造特征来实现。其中创造特征又经常以降维算法来实现。
特征工程的目的:降低计算成本,提升模型上限。
特征工程有三种
特征提取(feature extraction) | 从文字,图像,声音等其他非结构化数据中提取新信息作为特征。比如说,从淘宝宝贝名称中提取产品类别、产品颜色、是否是网红产品等等 |
---|---|
特征创造(feature creation) | 把现有特征进行组合,或互相计算,得到新的特征。比如说,有一列特征是速度,一类是距离,我们就可以通让两列相处,创造出新的特征:通过距离所花的时间 |
特征选择(feature selection) | 在所有的特征中,选择出有意义,对模型有帮助的特征,以避免必须将所有的特征都导入模型去训练的情况。 |
在sklearn中用于数据预处理和特征工程的模块
1)preprocessing:几乎包括数据预处理的所有内容
2)Impute:填充缺失值专用
3)feature——selection:包含特征选择的各种方法的实践
4)decomposition:包含降维算法
降维本质上是从一个维度空间映射到另一个维度空间,特征的多少别没有减少,当然在映射的过程中 特征值也会相应的变化。举个例子,现在的特征是1000维,我们想要把它降到500维。降维的过程就是找个一个从1000维映射到500维的映射关系。原始数据中的1000个特征,每一个都对应着降维后的500维空间中的一个值。假设原始特征中有个特征的值是9,那么降维后对应的值可能是3。
特征选择就是单纯地从提取到的所有特征中选择部分特征作为训练集特征,特征在选择前和选择后不改变值,但是选择后的特征维数肯定比选择前小,毕竟我们只选择了其中的一部分特征。举个例子,现在的特征是1000维,现在我们要从这1000个特征中选择500个,那个这500个特征的值就跟对应的原始特征中那500个特征值是完全一样的。对于另个500个没有被选择到的特征就直接抛弃了。假设原始特征中有个特征的值是9,那么特征选择选到这个特征后它的值还是9,并没有改变。
数据集:
#导入数据
import pandas as pd
data = pd.read_csv()
data.head()
该数据有784维(个属性),42000条属性
1. Filter 过滤法
过滤方法通常用作预处理,特征选择完全独立于任何机器学习算法,它是根据各种统计检验中的分数以及相关性的各项指标来选择特征。
过滤法的流程:
- 全部特征----->最佳特征子集-------->算法———>模型评估
1.1 方差过滤
1)VarianceThreshold
这是通过特征本身的方法来筛选特征的类,比如一个特征本身的方差很小,就表示样本在这个特征上基本没有差异,可能特征中的大多数值都一样,甚至整个特征的取值都相同,那这个特征对于样本区分没有什么作用,所以无论接下来的特征工程要做什么,都要优先消除方差为0 的特征。
VarianceThreshold有重要参数threshold, 表示是方差的阈值,表示舍弃所有方差小于threshold的特征,不填默认为0,即删除所有的记录都相同的特征。
form sklearn.feature_selection import VarianceThreshold
selector = VarianceThreshold() #实例化,不填参数默认方差为0
X_var0 = selector .fit_transform(X) #获取删除不合格特征之后的新特征矩阵
X_var0.shape
结果:还有4200条数据,708维数据。已经删除了方差为0的特征,明显还需要进一步的特征选择。然而,如果我们知道我们需要多少个特征,方差也可以帮助我们将特征选择一步到位。比如我们希望留一半的特征,那可以设定一个让特征总数减半的阈值,只要找到特征方差的中位数,再将这个中位数作为参数threshold的值输入就好了。
开始干:
import numpy as np
X_fsvar = VarianceThreshold(np.median(X.var().values)).fit_transform(X)
X_fsvar.shape
#(结果:42000,392)
当特征是二分类时,特征的取值句式伯努利随机变量,这些变量的方差可以计算为:
- Var[X] = p(1-p)
其中X是特征矩阵,p是二分类特征中的一类在这个特征中所占的概率。
若特征是伯努利随机变量,假设p=0.8,即二分类特征中某种分类占到80%以上的时候删除特征。
X_bvar = VarianceThreshold(.8 * (1 - .8)).fit_transform(X)
X_bvar.shape
#结果(42000,685)
- 方差过滤对模型的影响
通过上面的操作,我们会怀疑,这样做了后,对模型的效会有怎样的影响呢?
接下来,通过KNN和随机森林来对比一下,(方差过滤前和过滤后)
1)对于KNN来说,过滤后的效果明显,准确率稍有提升,但是平均运行时间减少了10分钟,特征选择后的算法效率上升了1/3。
2)对于随机森林来说,随机森林的准确率低于KNN,但是运行时间却连KNN的1%都不到,只主要十几秒,其次,方差过滤后,随机森林的准确率也微弱提升,但运行时间没有什么变化,依然是11s.
总结啦:
1. 为什么随机森林可以这么快,又是为何说呢么方差过滤对随机森林没有很大影响?
这是由于两种算法的原理涉及的计算量不同导致的。KNN,单颗决策树,SVM,神经网络,LR,都需要遍历特征或升维来进行计算,所以他们本身的运算量就大,消耗时间长,所以反差过滤等特征选择对它们就尤为重要。
但是对于不需要遍历特征的算法,如随机森林,它随机选择特征进行分支,本身运算就快,因此特征选择对他们来说效果不大。无论过滤法如何降低特征的数量,随机森林也只会选取固定数量的特征来建模,而KNN就不同了,特征越少,距离计算的维度就越少,模型明显会随着特征的减少变得轻量。因此(重点来了):
过滤法的主要对象是:需要遍历特征或升维的算法们。主要目的:在维持算法表现的前提下,帮助算法们降低计算成本。**
2. 过滤法对随机森林无效,却对数模型有效?
从算法原理来看,传统的决策树需要遍历所有特征,计算不纯度后分支,而随机森林是随机选择特征进行计算和分支,因此随机森林的运算更快,过滤法对随机森林无用,但是对决策树有用。
在sklearn中,决策树和随机森林都是随机选择特征进行分支的。但决策树在建模中随机抽取的特征数目远超过随机森林中每棵树随机抽取的特征数目(比如这个数据集中780维数据,随机森林每棵树只会抽取10-20个特征,而决策树可能会抽取300~400个特征)。因此,过滤法对随机森林无用,但是对决策树有用。
对受影响的算法来说,我们可以将方差过滤的影响总结如下:
阈值很小 被过滤掉的特征比较少 | 阈值比较大 被过滤掉的特征有很多 | |
---|---|---|
模型表现 | 不会有太大影响 | 可能会变的更好,代表被过滤掉的特征大部分是噪声 也可能变得糟糕,代表被过滤特征中很多都是有特征 |
运行时间 | 可能降低模型的运行时间。基于方差很小的特征有多少,当方差很小的特征不多时,对模型没有太大影响 | 一定能降低模型的运行时间 算法在遍历特征时的计算越复杂,运行时间下降的越多 |
在我们的对比汇总,使用的方差阈值时特征方差的中位数,因此属于阈值比较大,过滤掉的特征比较多。结果显示,无论是KNN还是随机森林,在过滤掉一半特征的之后,模型的精度都上升了,说明被过滤掉的特征在当前随机模式下大部分是噪音。因此我们可以保留这个去掉了一半特征的数据,来为以后的特征选择做准备。如果过滤之后的模型的效果反而更差了,说明,被过滤掉的特征中有很多是有效特征,那就要放弃过滤,使用其他手段进行特征选择。
虽然随机森林算的快,但是KNN的效果比随机森林更好?可以试试调整n_estimators
3. 选取超参数threshold?
问题来了,我们怎么知道方差过滤掉的到底是噪声还是有效特征?过滤后的模型到底会变好还是变坏?
答案:每个数据集不一样,只能自己去尝试!
在现实生活中,我们只会用阈值为0或者阈值很小的方差过滤,来优先下厨一些明显用不到的特征,然后会选择更优的特征选择方法继续削减特征数量。
1.2. 相关性过滤
方差挑选完后,就要考虑下一个问题:相关性了,如果特征与模型无关,那只会白白浪费计算内训,还可能会给模型点来噪声。在sklearn中,有三种常用的 方法来评判与标签之间的相关性:卡方,F检验,互信息。
1.2.1 卡方过滤
卡方过滤是专门针对离散型标签(即分类问题)的相关性过滤。卡方检验类feature_selection.chi2计算每个非负特征和便签之间的卡方统计量,并按照卡方统计量由高到低为特征排名。再结合feature_selection.SelectKBest这个可以输入“评分标准”来选出前k个分数最高的特征的类,可以借此除去最可能独立于标签,与分类目的无关的特征。
另外,如果卡方检验检测到某个特征中所有的值都相同,会提示我们使用方差先进行方差过滤,使用threshold=中位数时完成的方差过滤的数据来做卡方检验(如果方差过滤后的模型的表现反而降低了,那就不使用方差过滤后的数据,而是原数据)
from sklearn.ensemble import RandomForestClassifier as RFC #随机森林库
from sklearn.mode1_selection import cross_val_score
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2 #卡方检验
#假设在这里我一-直我需要300个特征
x _fschi = SelectKBest(chi2, k=300).fit—_transform(X_fsvar,y)
#chi2卡方统计量,k=300,表示选择前300个特征。
X_fschi.shape
验证一下模型的效果如何
cross_val_score(RFC(n_estimators=10,random_state=0),X_fschi,y,cv=5).mean()
结果:准确率93.33
结果说明:模型的效果降低了,说明在设定k=300的时候删除了与模型相关且有效的特征,k值设置太小,需要调整k值,或者放弃相关性过滤。反之,如果模型的表现提升了则说明我们的相关性过滤是有效的,是过滤掉了模型的噪声的,这时候就可以保留相关性过滤的结果。
1)选取超参数K
问题:如何设置一个最佳的k值呢,在现实数据中,数据量很大,模型很复杂的时候,希望最开始就能选择一个最优的超参数,那就用:学习曲线。
学习曲线的代码:
运行结果:
通过这条曲线,可以看到,随着K值的不断增加,模型的表现不断上升,这说明,K越大越好,数据中所有的特征都是与特征相关的。但是运行这条曲线的时间同样也是非常地长,接下来我们就来介绍一种更好的选择k的方法:看p值选择k.
卡方检验的本质是推测两组数据之间的差异,其检验的原假设是“两组数据是相互独立的"。卡方检验返回卡方值和p值两个统计量,其中卡方值很难界定有效的范围,而p值,一般使用0.01或者0.05作为显著性水平。即p值判断的边界,具体如下:
p值 | <=0.05或0.01 | >0.05或0.01 |
---|---|---|
数据差异 | 差异不是自然形成的 | 这些差异是很自然的样本误差 |
相关性 | 两组数据是相关的 | 两组数据是相关独立的 |
原假设 | 拒绝原假设,接收备择假设 | 接受原假设 |
从特征工程的角度,希望选择卡方值很大的,p值小于0.05的特征,即和标签相关联的特征,而调用SelectKBest之前,可以直接从chi2实例化后的模型中获得各特征所对应的卡方值和p值。
可以观察到,所有特征的p值都是0,这说明对于digit recognizor这个数据集来说,方差验证已经把所有和标签无关的特征都剔除了,或者这个数据集本身就不含与标签无关的特征。在这种情况下,舍弃任何一个特征,都会舍弃对模型有用的信息,而使模型表现下降,因此在我们对计算速度感到满意时,我们不需要使用相关性过滤来过滤我们的数据。如果我们认为运算速度太缓慢,那我们可以酌情删除一些特征, 但前提是,我们必须牺牲模型的表现。接下来,我们试试看用其他的相关性过滤方法验证一下我们在这个数据集 上的结论。
1.2.2 F 检验
F检验,又称ANOVA,方差齐性检验,是用来捕捉每个特征与标签之间的线性关系的过滤方法,既可以做回归,又可以做分类,因此包含feature_selection.f_classif(F检验分类)和feature_selection.f-regression(回归)两个类,其中F检验分类用于标签是离散型变量的数据,而F检验回归用于标签是连续型变量的数据。
和卡方检验一样,这两个类需要和类SelectKBest连用,并且我们也可以直接通过输出的统计量来判断到底需要设置一个什么样的K。需要注意的是,F检验在数据服从正态分布时效果会非常稳定,因此如果使用F检验过滤的话,需要先将数据转换成整天分布的方式。
F检验的本质是寻找两组数据之间的线性关系,其原假设是“数据不存在显著的线性关系"。它返回F值和p值两个统计量。和卡方过滤- -样, 我们希望选取p值小于0.05或0.01的特征,这些特征与标签时显著线性相关的,而p值大于0.05或0.01的特征则被我们认为是和标签没有显著线性关系的特征,应该被删除。以F检验的分类为例,我们继续在数字数据集上来进行特征选择:
from sklearn.feature_selection import f_classif
F, pvalues_f = f_classif(X_fsvae,y)
k = F.shape[0] - (pvalues_f > 0.05).sum() #请帮我找一下p值大于0.05的特征有多少,并加起来
结果:和我们使用卡方过滤的到的结论一样,:没有任何特征的p值大于0.01,所有的特征都是和标签相关的,因此我们不需要相关性过滤。
1. 2.3 互信息法
互信息法是用来捕捉每个特征与标签之间的任意关系(包括线性和非线性关系)的过滤方法,和F检验相似,它既可以做回归和可以做分类,并且包含两个类feature_selection.mutual_info_classif(互信息分类)和feature_selection.mutual_infoo_regression(互信息回归)。这两个类的用法和参数都和F检验一模一样,不过互信息法比F检验更加强大,F检验只能够找出线性关系,而互信息法可以找出任意关系。
互信息法不返回p值或者F值类似的统计量,它返回每个特征与目标之间的互信息量的估计,这个估计量在【0,1】之间取值,为0则表示两个变量独立,为1则表示两个变量完全相关,以互信息分类为例的代码如下:
from sklearn.feature_selection import mutual_info_classif as MIC
reuslt = MIC(X_fsvar,y)
k = result.shape[0] - sum(result <= 0)
所有特征的互信息量估计都大于0,因此所有特征都与标签相关。
无论是F检验还是互信息法,都可以使用互信息法,都可以使用学习曲线,只是使用统计量的方法h会更加高效。当统计量判断已经没有特征可以删除的时候,无论学习曲线如何跑,删除特征都只是会降低模型的表现。
1.3. 过滤法总结
到这里我们学习了常用的基于过滤法的特征选择,包括方差过滤,基于卡方,F检验和互信息的相关性过滤,讲解了各个过滤的原理和面临的问题,以及怎样调这些过滤类的超参数。通常来说,我会建议,先使用方差过滤,然后使用互信息法来捕捉相关性,不过了解各种各样的过滤方式也是必要的。所有信息被总结在下表,大家自取:
类 | 说明 | 超参数选择 |
---|---|---|
VarianceThreshold | 方差过滤,可输入方差阈值,返回方差大于阈值的新特征矩阵 | 看具体时间究竟是含有更多噪声还是更多有效特征,一般使用0或来筛选,也可以画学习曲线或取中位数跑模型来帮助确认 |
SelectKBest | 用来选取K和同级浪结果最佳的特征,生成付姐统计量要求的新特征矩阵 | 看配合使用的统计量 |
chi2 | 卡方检验,专用于分类算法,捕捉相关性 | 追求p小于显著性水平的特征 |
f_classif | F检验分类,只能捕捉线性相关性 要求数据服从正态分布 | 追求p小于显著性水平的特征 |
f_regression | F检验回归,只能捕捉线性相关性 要求数据服从正态分布 | 追求p小于显著性水平的特征 |
mutual_info_classif | 互信息分类,可以不合作任何相关性 不能用于稀疏矩阵 | |
mutual_info_regression | 互信息回归,可以捕捉任何相关性 不能用于稀疏矩阵 | 追求互信息估计大于0的特征 |
2. 嵌入法
嵌入法是让算法自己决定使用哪些特征的方法,即特征选择和算法训练同时进行,在使用嵌入法时,先使用某些 机器学习算法和模型进行训练,得到各个特征的权重系数,根据权重系数从大到小选择权值系数比较大的特征,权值系数代表了特征对于模型的某种贡献或者某种重要性,比如决策树和树的继承模型中feature_inportances,可以列出各个特征对数的建立的贡献,我们就可以基于这种贡献的评估,找出对模型建立最有用的特征。相比于过滤法,嵌入法的结果会更加精确到模型的效用本身,对于提高模型效力有更好的效果。由于考虑到特征对模型的贡献,因此无关的特征(需要相关性过滤的特征)和无区分度的特征(需要方差过滤)缺乏对模型的贡献而被删除掉,可谓是过滤法的进化版。
然而嵌入法也有缺点。
过滤法中使用的统计量可以使用统计知识来查找范围(如p值应当低于显著性水平0.05),而嵌入法中使用的权重系数没有这样的一个范围。可以说,当权重系数为0 的特征是对模型没有租用的,但当大多数特征都 对模型有贡献且贡献不一时,就很难去界定一个有效的临界值。这种情况下,模型权重系数就是我们的超参数,需要学习曲线或者根据模型本身的某些性质去判断这个超参数的最佳值究竟应该是多少。
另外,嵌入法引入了算法来挑选特征,并且每次挑选都会使用全部特征,因此计算速度也会和应用的算法有很大关系。如果采用计算量跟大,计算缓慢的算法,嵌入法本身也会非常耗时,并且,在选择完毕后,还需要自己来评估模型。
- feature_selection.SelectFromModel
class sklearn.feature_selection.SelectFromModel(estimator,threshold=Node,prefit=False,norm_order=1,max_features=None)
SelectFromModel是一个元变换器,可以与任何在拟合后具有coef,feature_importances_属性或参数中可选惩罚项的评估器一起使用(比如随机森林和树模型就具有属性feature_importtances,逻辑回归就带有L1和L2惩罚项,SVM也支持L2惩罚项)。
对于有feature_importances_的模型来说,如果重要性低于提供的阈值参数,则认为这些特征不重要并被移除,feature_importances_的取值范围是【0,1】,如果设置阈值很小,比如0.001,就可以删除那些对标签预测完全没有贡献的特征,如果设置得很接近1,可能只有一两个特征能够被留下。
使用惩罚项的嵌入法
而对于使用惩罚项的模型来说,正则化成大项越大,特征在模型中对应的系数就越小,当正则化惩罚项大到一定程度的时候,部分特征系数就会变成0,当正则化惩罚项继续增大到一定程度时,所有的特征系数都会趋于0,但是一部分特征系数会更容易先变为0,这部分系数是可以筛选的,也就是说,选择特征系数较大的特征,另外,SVM和LR使用参数C来控制返回的特征矩阵的稀疏性,参数C越小,返回的特征越少,LASSO回归,用alpha系系数来控制返回的特征矩阵,alpha的值越大,返回的特征越少。
嵌入法中的重要参数:
参数 | 说明 |
---|---|
estimator | 使用的模型评估器,只要是带feature_mportances_或者coef_属性,或带L1,L2惩罚项的模型都可以使用 |
threshold | 特征重要性的阈值,重要性低于这个阈值的特征都将被删除 |
prefit | 默认False,判断是否将实例化后的模型直接传递给构造函数。如果为True,则必须直接调用fit和transform,不能使用fit_transform,并且SelectFromModel不能与cross_val_score,GridSearchCV和克隆估计器的类似使用程序一起使用 |
norm_order | k可输入非零整数,正无穷,负无穷,默认值为1。 在评估器的coef_属性高于维的情况下, 用于过滤低于阈值的系数的向量的范数的阶数。 |
max_features | 在阈值设定下,要选择的最大特征数,要禁用阈值并仅根据max_feature选择,请设置threshold = -np.inf |
首先重要考虑的是前两个参数,使用随机森林为例,则需要学习曲线来帮助我们寻找最佳特征值。
from sklearn.feature_selection import SelectFromModel
form sklearn.ensemble import RandomForestClassifier as RFC
RFC_ = RFC(_estimators = 10,random_state = 0) #随机森林实例化
X_embedded = SelectFormModel(RFC_,threshold=0.005).fit_transform(X,y)
#在这里我们只想取出有限的特征,0.05这个阈值对于有780个特征的数据来说,是非常高的阈值,因为平均每个特征只能分到大约0.001的feature_importances_
X_embedded.shape
#模型的维度明显降低了,
#同样的,也可以画学习曲线来找最佳阈值
从图像上来看,随着阈值越来越高,模型的效果逐渐变差,被删除的特征越来越多,信息损失也逐渐变大。但是在0.00134之前,模型的效果都可以维持在0.93以上,因此我们可以从中挑选一个数值来验证一下模型的效果。
#挑选的是0.00067
X_embedded = SelectFromModel(RFC_,threshold=0.00067.fit_transform(X,y)
X_embedded.shape
#结果是324个特征
cross_val_score(RFC_,X_embedded,y,cv=5).mean()
可以看出,特征个数瞬间缩小到324多,这比我们在方差过滤的时候选择中位数过滤出来的结果392列要小,并且交叉验证分数0.9399高于方差过滤后的结果0.9388,这是由于嵌入法比方差过滤更具体到模型的表现的缘故,换一个算法,使用同样的阈值,效果可能就没有这么好了。和其他调参-样,我们可以在第一条学习曲线后选定一 个范围,使用细化的学习曲线来找到最佳值:
和其他调参一样,可以在第一条学习曲线后选定一个范围,使用细化的学习曲线来找到最佳值:
结果:果然0.00067并不是最高点,真正的最高单0.000564已经将模型效果提升到了94%以上。接下来,使用0.000564来跑一跑我们的SelectFromModel:
代码解释:
第一句,实例化,RFC_是实例化好的随机森林,threshold是从图像中选出来的值,实例化后 一步到位fit_transform,形成新的特征矩阵。运行后的结果是42000,340列
第二句话,交叉验证的结果,0.9408335…
第二句话 重新实例化随机 森林,每个森林跑100个树,而不是10个树,剩下的都一样。结果是96.36…
得出的特征数目依然小于方差筛选,并且模型的表现也比没有筛选之前更高,已经完全可以和计算一次半小时的KNN相匹敌(KNN的准确率是96.58%),接下来再对随机森林进行调参,准确率应该还可以再升高不少。可见,在嵌入法下,我们很容易就能够实现特征选择的目标:减少计算量,提升模型表现。因此,比起要思考很多统计量的过滤法来说,嵌入法可能是更有效的一种方法。然而,过滤法的计算远远比嵌入法要快,所以大型数据中,我们还是会优先考虑过滤法,或者下面这种结合了过滤和嵌入法的方法:包装法Wrapper。
3. 包装法 Wrapper
包装法也是一个特征选择和算法训练同时进行的方法,与嵌入法十分相似,他是以来算法自 coef_属性或eature_importances_属性来完成特征选择。但不同的是,我们往往使用一个目标函数 帮助我么选择特征,而不是自己输入某个评估指标或统计量的阈值。包装法在初始特征集上训练评 coef_属性或通过feature_importances_属性获得每个特征的重要性。然后,从当前的一组特征中 特征。在修剪的集合上递归地重复该过程