- 博客(7)
- 收藏
- 关注
原创 逻辑回归作分类,引入非线性函数
逻辑回归,是名为“回归”的线性分类器 ,本质是由线性回归变化而来,一种广泛用于分类问题的广义回归算法。通过函数z,线性回归使用输入的特征矩阵X输出一组连续型的标签枝y_pred,完成预测连续型变量的任务。若是离散型变量,则引入联系函数,让值无限接近0或1,二分类任务,逻辑回归的联系函数为Sigmoid函数为什么选择逻辑回归:逻辑回归对线性关系的拟合效果好到丧心病狂;逻辑回归计算快;逻辑回归返回的分类结果不是固定的0,1,而是以小数形式呈现的类概率数字。并不是真正的概率,只是最大似..
2022-04-28 14:54:04 721
原创 22月18,numpy-数组的形状
import numpy as np>>> np.arange(24).reshape(2,3,4)array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]])>>> t1 = np.arange(24).re.
2022-04-18 14:53:34 340
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人